Several prokaryotic ClC proteins have been demonstrated to function as exchangers that transport both chloride ions and protons simultaneously in opposite directions. However, the path of the proton through the ClC exchanger, and how the protein brings about the coupled movement of both ions are still unknown. In this work, we use an atomistic molecular dynamics (MD) simulation to demonstrate that a previously unknown secondary water pore is formed inside an Escherichia coli ClC exchanger.
View Article and Find Full Text PDFJ Comput Chem
February 2010
In the present work, we have found by an atomistic molecular dynamics simulation that hydrogen atoms originating from the residues of a prokaryotic ClC protein (EcClC) stabilize the chloride ion without water molecules in the pore of ClC protein. When the chloride ion conduction is simulated by pulling a chloride ion along the pore axis, the free energy barrier for chloride ion conduction is calculated to be low (4 kcal/mol), although the chloride ion is stripped of its hydration shell as it passes through the dehydrated pore region. The calculation of the number of hydrogen atoms surrounding the chloride ion reveals that water molecules hydrating the chloride ion are replaced by polar and non-polar hydrogen atoms protruding from the protein residues.
View Article and Find Full Text PDFAlthough the mechanism of proton exclusion in aquaporin is investigated by many researchers, the detailed molecular mechanism for ion exclusion in aquaporin is still not completely understood. In the present work, a detailed mechanism for ion exclusion in aquaporin-1 (AQP1) at an atomistic level is investigated by calculating the free energy for transport of ions in AQP1 using an atomistic molecular dynamics simulation. For this purpose, sodium and chloride ions are chosen as representatives for nonprotonic ions.
View Article and Find Full Text PDF