Publications by authors named "Youmie Park"

Green synthesis strategies have been widely applied for the preparation of versatile nanomaterials. Gold nanospheres with an average size of 6.95 ± 2.

View Article and Find Full Text PDF

We investigated the effect of green tea extract PEGylated gold nanoparticles (P-AuNPs) making use of its targeted and sustained drug delivery against cyclophosphamide (CYP)-induced cystitis. AuNPs were synthesized by reduction reaction of gold salts with green tea extract following the concept of green synthesis. Mostly spherical-shaped P-AuNPs were synthesized with an average size of 14.

View Article and Find Full Text PDF

Background: Advances in the field of nanotechnology have shed light on the applications of nanoparticles for cancer treatment.

Methods: Folic acid and chitosan-functionalized gold nanorods (FACS-R) and triangular silver nanoplates (FACS-T) were synthesized and their properties were elucidated by UV-visible spectrophotometry, Fourier-transform infrared spectroscopy, field emission transmission electron microscopy and high-resolution X-ray diffraction.

Results: The average size of the FACS-R was determined to be a transverse length of 13.

View Article and Find Full Text PDF

In the present report, green synthesis of titanium dioxide nanoparticles (TiO NPs) was performed by upcycling mangosteen (Garcinia mangostana) pericarp extract (methanol and ethyl acetate extracts). Field emission scanning electron microscopy images revealed an aggregated structure with a highly porous network of TiO NPs. TiO NPs synthesized with ethyl acetate extract (EtOAc-TiO NPs) exhibited more monodispersity and possessed smoother surfaces than the control TiO NPs (Con-TiO NPs) and TiO NPs synthesized with methanol extract (MeOH-TiO NPs).

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) were synthesized via a green strategy using fifty-eight plant extracts that originated from Vietnam and Indonesia. Among the fifty-eight AgNP samples, we selected six AgNP samples synthesized by the extracts of Areca catechu, Hypotrachyna laevigata, Ardisia incarnata, Maesa calophylla, Maesa laxiflora and Adinandra poilanei. Remarkably, these six extracts exhibited higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power than the other extracts.

View Article and Find Full Text PDF

Onion () extract was used for the green synthesis of gold and silver nanoparticles. Each colloidal solution exhibited surface plasmon resonance, with a peak at 532 nm for gold nanoparticles and 391 nm for silver nanoparticles. Microscopic results confirmed the presence of spherical shapes.

View Article and Find Full Text PDF

A selective synthesis of hydrazoarene from nitroarene and its application are reported. Using polystyrene (PS) resins as solid supports for Au nanoparticles (AuNPs), polystyrene-supported Au nanoparticles (AuNPs@PS) were synthesized and characterized. In the presence of AuNPs@PS (1.

View Article and Find Full Text PDF

Quercetin is a flavonoid and is abundant in the plant kingdom. Green nanoparticles (gold and silver) were synthesized by using quercetin as a reductant via a green route for their potential nanoarchitechtonic applications. There were no toxic chemicals involved during the synthesis.

View Article and Find Full Text PDF

Sesquiterpenoids from the flower bud extract of were effectively utilized as a reducing agent for eco-friendly synthesis of silver and gold nanoparticles. The silver and gold nanoparticles had a characteristic surface plasmon resonance at 416 nm and 538 nm, respectively. Microscopic images revealed that both nanoparticles were spherical, and their size was measured to be 13.

View Article and Find Full Text PDF

We synthesized silver nanoparticles using thirty Chinese plant extracts via a green synthetic strategy. UV-visible spectra showed that the silver nanoparticles have an absorbance at 450 nm. Among the thirty extracts, seven extracts (Cratoxylum formosum, Phoebe lanceolata, Scurrula parasitica, Ceratostigma minus, Mucuna birdwoodiana, Myrsine africana and Lindera strychnifolia) exhibited the successful synthesis of silver nanoparticles.

View Article and Find Full Text PDF

In the present report, three different shapes of chitosan-capped gold nanoparticles (nanospheres, nanostars, and nanorods) were synthesized to investigate the effects of shape on cytotoxicity and cellular uptake in cancer cells. Green tea extract was utilized as a reducing agent to reduce gold salts to gold nanospheres. Gold nanostars were prepared using an as-prepared nanosphere solution as a seed solution.

View Article and Find Full Text PDF

The extract of Carpesium cernuum whole plant was successfully used as a green factory for the synthesis of silver nanoparticles in a one-step, one-pot process. The extract efficiently reduced silver ions to spherical silver nanoparticles. The size was measured as 13.

View Article and Find Full Text PDF

Using alternating current electric fields, nanoribbons are fabricated from an aqueous suspension of gold nanoparticles (AuNPs) on mica substrate without resorting to further chemical functionalization of AuNPs. The potential and kinetic energies of AuNPs subjected to attractive forces from a mica substrate provide sufficient energy to pass the diffusion barrier of the gold atoms, which eventually leads to cold welding. A dielectrophoresis force exerted on polarizable particles in a non-uniform electric field contributes to the directed growth of the cold welding that occurs by adjusting the lattice structures of AuNPs.

View Article and Find Full Text PDF

Three aqueous plant extracts (Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris) were selected for the biofabrication of gold nanoparticles. The antioxidant activities (i.e.

View Article and Find Full Text PDF

Due to its tentacle poison and huge body, giant jellyfish (Nemopilema nomurai) poses challenging issues to the environment and ecosystems. Here we developed, upcycling a giant jellyfish extract as a reducing agent, a green synthetic method of gold nanoparticles (JF-AuNPs) which possess biological activities. The colloidal solutions of JF-AuNPs were blue, violet, purple and pink depending on the extract concentration.

View Article and Find Full Text PDF

Skate (Dipturus chilensis) cartilage extract was utilized as a green reducing agent for the synthesis of spherical gold nanoparticles with an average size of 16.7 ± 0.2 nm.

View Article and Find Full Text PDF

Green strategies to synthesize gold nanoparticles have attracted a substantial amount of attention because global sustainability is a focal issue in many research areas. In the present study, rosmarinic acid was utilized as a reducing agent to reduce gold ions to gold nanoparticles. The characteristic surface plasmon resonance of gold nanoparticles was observed at 532 nm with a pink-colored colloidal solution.

View Article and Find Full Text PDF

The recent mass emergence of Nomura's jellyfish (Nemopilema nomurai) has caused much economic and environmental damage. However, there is no innovative strategy to dispose of or utilize these jellyfish. Some reports suggest that the jellyfish may be bioactive resources and a source of important compounds with antibacterial activity.

View Article and Find Full Text PDF

Tannic acid is a phenolic compound that is abundant in plants. Five different concentrations of tannic acid were used as a reducing agent to synthesize gold nanoparticles (AuNPs). Three kinds of AuNPs were prepared to evaluate their catalytic activity for the 4-nitrophenol reduction reaction in the presence of sodium borohydride: (i) Colloidal solutions of AuNPs synthesized using tannic acid as a reducing agent (TA-AuNPs), (ii) Nanoparticles made by centrifuging the colloidal solution of TA-AuNPs followed by re-dispersion with deionized water (cf-TA-AuNPs), and (iii) Nanoparticles made by the in situ crystallization of TA-AuNPs on graphene oxide (TA-AuNPs-GO).

View Article and Find Full Text PDF

Anisotropic snowman-like silver nanoparticles (AgNPs) were synthesized using the extract of Caesalpinia sappan heartwood as a reducing agent in the presence of cetyltrimethylammonium bromide. Two surface plasmon resonance bands of the orange solution were observed at 446 nm and 539 nm in UV-visible spectra. High-resolution X-ray diffraction analysis confirmed the face-centered cubic structure of the AgNPs.

View Article and Find Full Text PDF

A green synthesis of gold and silver nanoparticles is described in the present report using platycodon saponins from Platycodi Radix (Platycodon grandiflorum) as reducing agents. Platycodin D (PD), a major triterpenoidal platycodon saponin, was enriched by an enzymatic transformation of an aqueous extract of Platycodi Radix. This PD-enriched fraction was utilized for processing reduction reactions of gold and silver salts to synthesize gold nanoparticles (PD-AuNPs) and silver nanoparticles (PD-AgNPs), respectively.

View Article and Find Full Text PDF

Mangosteen () pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract.

View Article and Find Full Text PDF

In this study, various concentrations of caffeic acid (CA) were used to synthesize gold nanoparticles (CA-AuNPs) in order to evaluate their catalytic activity in the 4-nitrophenol reduction reaction. To facilitate catalytic activity, caffeic acid was removed by centrifugation after synthesizing CA-AuNPs. The catalytic activity of CA-AuNPs was compared with that of centrifuged CA-AuNPs (cf-CA-AuNPs).

View Article and Find Full Text PDF

Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534~543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.

View Article and Find Full Text PDF

From the images of HR-TEM, FE-SEM, and AFM, the cold welding of gold nanoparticles (AuNPs) on a mica substrate is observed. The cold-welded gold nanoparticles of 25 nm diameters are found on the mica substrate in AFM measurement whereas the size of cold welding is limited to 10 nm for nanowires and 2~3 nm for nanofilms. Contrary to the nanowires requiring pressure, the AuNPs are able to rotate freely due to the attractive forces from the mica substrate and thus the cold welding goes along by adjusting lattice structures.

View Article and Find Full Text PDF