Publications by authors named "Youlong Xie"

The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear.

View Article and Find Full Text PDF

The regulatory mechanism of the transcription factor GATA3 in the differentiation and maturation process of extravillous trophoblasts (EVT) in early pregnancy placenta, as well as its relevance to the occurrence of pregnancy disorders, remains poorly understood. This study leveraged single-cell RNA sequencing data from placental organoid models and placental tissue to explore the dynamic changes in GATA3 expression during EVT maturation. The expression pattern exhibited an initial upregulation followed by subsequent downregulation, with aberrant GATA3 localization observed in cases of recurrent miscarriage (RM).

View Article and Find Full Text PDF

Study Question: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)?

Summary Answer: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression.

What Is Known Already: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood.

View Article and Find Full Text PDF

Objective: The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth.

Methods: We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.

View Article and Find Full Text PDF

Human trophoblastic lineage development is intertwined with placental development and pregnancy outcomes, but the regulatory mechanisms underpinning this process remain inadequately understood. In this study, based on single-nuclei RNA sequencing (snRNA-seq) analysis of the human early maternal-fetal interface, we compared the gene expression pattern of trophoblast at different developmental stages. Our findings reveal a predominant upregulation of TBX3 during the transition from villous cytotrophoblast (VCT) to syncytiotrophoblast (SCT), but downregulation of TBX3 as VCT progresses into extravillous trophoblast cells (EVT).

View Article and Find Full Text PDF

Microbial communities influence host phenotypes through microbiota-derived metabolites and interactions between exogenous active substances (EASs) and the microbiota. Owing to the high dynamics of microbial community composition and difficulty in microbial functional analysis, the identification of mechanistic links between individual microbes and host phenotypes is complex. Thus, it is important to characterize variations in microbial composition across various conditions (for example, topographical locations, times, physiological and pathological conditions, and populations of different ethnicities) in microbiome studies.

View Article and Find Full Text PDF

Purpose: As a member of the C19MC family, miR-526b-5p is mainly expressed in the placental tissue and is a well-known tumor suppressor microRNA. However, its effect on the function of trophoblasts and its role in the development of recurrent spontaneous abortion (RSA) remains unclear.

Methods: Transcriptome sequencing, quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, 5-ethynyl-2'-deoxyuridine (Edu) proliferation analysis, cell counting kit-8 (CCK8) assay, Transwell assays, and wound healing were used to detect the proliferation, migration, and invasion capacity of trophoblasts.

View Article and Find Full Text PDF

Objective: To explore the effects of hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA) on the migration and invasion of HTR-8/SVneo cells, a human trophoblast cell line, and its potential mechanism of action.

Methods: Immunofluorescence staining was done to evaluate the expression levels of HADHA in samples of normal villi and recurrent spontaneous abortion (RSA) villi at 6-8 weeks. Lentiviral infection system was used to construct stable HTR-8/SVneo cell lines with overexpression and knockdown.

View Article and Find Full Text PDF

Poly(N-isopropylacrylamide) (PNIPAM) based electrically conductive hydrogels (PNIPAM-ECHs) have been extensively studied in recent decades due to their thermal-responsive (leading to the volume change of hydrogels) and electrically conductive performance. The incorporation of conductive components into the PNIPAM hydrogel network makes it become conductive hydrogel, and as a result, the PNIPAM hydrogel could become sensitive to an electrical signal, greatly expanding its application. In addition, conductive components usually bring new stimuli-responsive properties of PNIPAM-based hydrogels, such as near-infrared light and stress/strain responsive properties.

View Article and Find Full Text PDF

Human cytotrophoblast (CTB) differentiation into syncytiotrophoblast (STB) is essential for placental formation and function. Understanding the molecular mechanisms involved in trophoblast differentiation is necessary as it would help in the development of novel therapeutic agents to treat placentation-mediated pregnancy complications. In this study, we found a common upregulated gene, ADAM-like Decysin-1 (ADAMDEC1), from five published microarray and RNA-sequencing datasets.

View Article and Find Full Text PDF

Porcine OTX2 was found to be highly activated in porcine iPS cells (piPSCs) that were reported by different laboratories worldwide. To reveal the regulatory function of OTX2 in porcine reprogrammed cells, we screened porcine miRNA-seq databases and found two miRNAs, miR-1343 and miR-545, that could specifically bind to 3'UTR of OTX2 and suppress endogenous OTX2 expression in piPSCs. Knockdown of OTX2 by miR-1343 and miR-545 could significantly increase the expression of SOX2 and ESRRB, but did not alter the expressions of OCT4 and KLF4, and improve the pluripotency of piPSCs.

View Article and Find Full Text PDF

Unipotent spermatogonial stem cells (SSCs) can be efficiently reprogrammed into pluripotent stem cells only by manipulating the culture condition, without introducing exogenous reprogramming factors. This phenotype raises the hypothesis that the endogenous transcription factors (TFs) in SSCs may facilitate reprogramming to acquire pluripotency. In this study, we screened a pool of SSCs TFs (Bcl6b, Lhx1, Foxo1, Plzf, Id4, Taf4b, and Etv5), and found that oncogene Etv5 could dramatically increase the efficiency of induced pluripotent stem cells (iPSCs) generation when combined with Yamanaka factors.

View Article and Find Full Text PDF

Thermal batteries with molten salt electrolytes are used for many military applications, primarily as power sources for guided missiles. The Li-B/CoS couple is designed for high-power, high-voltage thermal batteries. However, their capacity and safe properties are influenced by acute self-discharge that results from the dissolved lithium anode in molten salt electrolytes.

View Article and Find Full Text PDF

Previous evidences have proved that porcine-induced pluripotent stem cells (piPSCs) could be induced to distinctive metastable pluripotent states. This raises the issue of whether there is a common transcriptomic profile existing among the piPSC lines at distinctive state. In this study, we performed conjoint analysis of small RNA-seq and mRNA-seq for three piPSC lines which represent LIF dependence, FGF2 dependence and LFB2i dependence, respectively.

View Article and Find Full Text PDF

The transcription factor Otx2 acts as a negative switch in the regulation of transition from naive to primed pluripotency in mouse pluripotent stem cells. However, the molecular features and function of porcine OTX2 have not been well elucidated in porcine-induced pluripotent stem cells (piPSCs). By studying high-throughput transcriptome sequencing and interfering endogenous expression, we demonstrate that OTX2 is able to downgrade the self-renewal of piPSCs.

View Article and Find Full Text PDF