The aim of this study was to reveal the mechanism by which co-inoculation with both Trichoderma viridis and Bacillus subtilis improved the efficiency of composting and degradation of lignocellulose in agricultural waste. The results showed that co-inoculation with Trichoderma and Bacillus increased abundance of Bacteroidota to promote the maturation 7 days in advance. Galbibacter may be a potential marker of co-inoculation composting efficiency compost.
View Article and Find Full Text PDFBackground: Lodging is a major factor contributing to yield loss and constraining the mechanical harvesting of wheat crops. Genetic improvement through breeding effectively reduced the lodging and improved the grain yield, however, the physiological mechanisms involved in providing resistance to lodging are different in the breeding stage and are not clearly understood. The purpose of this study was to compare the differences in the lodging resistance (LR) of the wheat varieties released during the different decades and to explore the effect of the application of nitrogen (N) fertilizer on the plasticity of LR.
View Article and Find Full Text PDFIt is important to quantify nutrient requirements and optimize fertilization to improve peanut yield and fertilizer use efficiency. In this study, a multi-site field trial was conducted from 2020 to 2021 in the North China Plain to estimate nitrogen (N), phosphorus (P), and potassium (K) uptake and requirements of peanuts, and to evaluate the effects of fertilization recommendations from the regional mean optimal rate (RMOR) on dry matter, pod yield, nutrient uptake, and fertilizer use efficiency. Results show that compared with farmer practice fertilization (FP), optimal fertilization (OPT) based on the RMOR increased peanut dry matter by 6.
View Article and Find Full Text PDFBoth genetic improvement and the application of N fertilizer increase the quality and yields of wheat. However, the molecular kinetics that underlies the differences between them are not well understood. In this study, we performed a non-targeted metabolomic analysis on wheat cultivars from different release years to comprehensively investigate the metabolic differences between cultivar and N treatments.
View Article and Find Full Text PDFThe contributions of the different leaf layers to maize yields identified as middle leaf > lower leaf > upper leaf, where the vertical photosynthetically active radiation (PAR) in the canopy gradually decreases. We hypothesized that the allocation of more PAR and nitrogen (N) to the highest contributing leaves will would be beneficial for higher yields and N use efficiencies. The N application rate and plant density effectively regulated the canopy light and N distribution.
View Article and Find Full Text PDFThe accurate and nondestructive assessment of leaf nitrogen (N) is very important for N management in winter wheat fields. Mobile phones are now being used as an additional N diagnostic tool. To overcome the drawbacks of traditional digital camera diagnostic methods, a histogram-based method was proposed and compared with the traditional methods.
View Article and Find Full Text PDFLittle has been reported on the effects of long-term fertilization on rhizosphere soil microbial diversity. Here, we investigated the effects of long-term continuous nitrogen (N) fertilization on the diversity and composition of soil bacteria using data from a 10-year field experiment with five N application rates (0, 120, 180, 240, and 360 kg N hm). The results revealed varying degrees of reduction in the numbers of bacterial operational taxonomic units (OTUs) in response to the different N application rates.
View Article and Find Full Text PDFThe stay-green leaf phenotype is typically associated with increased yields and improved stress resistance in maize breeding, due to higher nitrogen (N) nutrient levels that prolong greenness. The application of N fertilizer can regulate the N status of plants, and furthermore, impact the photosynthetic rates of leaves at the productive stage; however, N deficiencies and N excesses will reduce maize yields. Consequently, it is necessary to develop N fertilizer management strategies for different types of stay-green maize.
View Article and Find Full Text PDFIncreasing grain zinc (Zn) concentration of cereals for minimizing Zn malnutrition in two billion people represents an important global humanitarian challenge. Grain Zn in field-grown wheat at the global scale ranges from 20.4 to 30.
View Article and Find Full Text PDFAgriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil-crop system management practices based on a modern understanding of crop ecophysiology and soil biogeochemistry increases average yields for rice, wheat and maize from 7.
View Article and Find Full Text PDFThe relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels.
View Article and Find Full Text PDFUnderstanding the time-course of dry matter (DM) and nitrogen (N) accumulation in terms of yield-trait relationships is essential to simultaneously increase grain yield and synchronize N demand and N supply. We collected 413 data points from 11 field experiments to address patterns of DM and N accumulation with time in relation to grain yield and management of winter wheat in China. Detailed growth analysis was conducted at the Zadok growth stages (GS) 25 (regreening), GS30 (stem elongation), GS60 (anthesis), and GS100 (maturity) in all experiments, including DM and N accumulation.
View Article and Find Full Text PDFBreeding high-yielding and nutrient-efficient cultivars is one strategy to simultaneously resolve the problems of food security, resource shortage, and environmental pollution. However, the potential increased yield and reduction in fertilizer input achievable by using high-yielding and nutrient-efficient cultivars is unclear. In the present study, we evaluated the yield and nitrogen use efficiency (NUE) of 40 commercial maize hybrids at five locations in North and Northeast China in 2008 and 2009.
View Article and Find Full Text PDFTaking wheat varieties Yumai 49-198 (multi-spike phenotype) and Lankao Aizao 8 (large-spike phenotype) as test materials, field experiments were conducted at Wenxian and Lankao sites of Henan Province to study the effects of nitrogen fertilization on their population dynamics and yield and on the alteration of soil nitrogen. Five nitrogen application rates, i. e.
View Article and Find Full Text PDF