Mixtures of ionic surfactants of opposite charge ("catanionic" mixtures) show strongly nonideal behaviors, for example, in terms of evolution of surface tension, critical micelle concentration, or morphology with respect to composition in each surfactant. In several catanionic systems, it has been proposed that the interaction between both surfactants is so strong that lateral phase segregation occurs within bilayers, with crystallites of preferential composition demixing from the excess of the other surfactant. Here, we investigate the temperature-composition phase diagram of the myristic acid/cetyltrimethylammonium mixtures.
View Article and Find Full Text PDFWe have studied the dialysis of surfactant mixtures of two oppositely charged surfactants (catanionic mixture) by combining HPLC, neutron activation, confocal microscopy, and NMR. In mixtures of n-alkyl trimethylammonium halides and n-fatty acids, we have demonstrated the existence of a specific ratio between both surfactant contents (anionic/cationic almost equal to 2:1) that determines the morphology, the elimination of ions, and the elimination of the soluble cationic surfactant upon dialysis. In mixtures prepared with lower anionic surfactant contents, ill-defined aggregates are formed, and dialysis quickly eliminates the ion pairs (H+X-) formed upon surfactant association and also the cationic surfactant until a limiting 2:1 ratio is reached.
View Article and Find Full Text PDF