Biochem Biophys Res Commun
December 2022
The V-set and transmembrane domain-containing protein (VSTM) family is a newly discovered immunoglobulin (Ig) superfamily that shares structural similarities with the B7-like transmembrane proteins. Although most VSTM5 members have been reported to exert immune-related functions, VSTM5 has been described as a regulator of neuronal morphogenesis and migration in the brain. Based on its close phylogenetic relationship with two immune checkpoints, VISTA and TIGIT, we investigated the potential role of VSTM5 in T-cell immune responses.
View Article and Find Full Text PDFObjectives: Lymphocyte-activation gene 3 (LAG-3) represents a potential immune checkpoint target for cancer treatment. We investigated LAG-3 expression and its prognostic value in patients with surgically treated clear cell renal cell carcinoma (RCC) and correlated LAG-3 expression with programmed cell death ligand 1(PD-L1).
Methods: We evaluated LAG-3 and PD-L1 expression using immunohistochemistry on tissue microarrays incorporating 134 primary excision specimens of clear cell RCC (ccRCC).
Biochem Biophys Res Commun
November 2022
VSIG4, a newly identified co-inhibitory molecule belonging to the B7-related family, is exclusively expressed on tissue-resident macrophages and is involved in the suppression of T cell proliferation and cytokine production. We sought to characterize the role of VSIG4 in anti-tumor immunity in the tumor microenvironment, focusing on VSIG4-expressing tumor-associated macrophages (TAMs). We found that VSIG4-expressing TAMs negatively regulated antigen-specific T cell proliferation and cytokine production through direct inhibition via cell cycle arrest, but not apoptosis, as well as through their arginase 1 activity.
View Article and Find Full Text PDFThymic atrophy in sepsis is a critical disadvantage because it induces immunosuppression and increases the mortality rate as the disease progresses. However, the exact mechanism of thymic atrophy has not been fully elucidated. In this study, we discovered a novel role for VSIG4-positive peritoneal macrophages (V4(+) cells) as the principal cells that induce thymic atrophy and thymocyte apoptosis.
View Article and Find Full Text PDFIn the last decade, we have witnessed an unprecedented clinical success in cancer immunotherapies targeting the programmed cell-death ligand 1 (PD-L1) and programmed cell-death 1 (PD-1) pathway. Besides the fact that PD-L1 plays a key role in immune regulation in tumor microenvironment, recently a plethora of reports has suggested a new perspective of non-immunological functions of PD-L1 in the regulation of cancer intrinsic activities including mesenchymal transition, glucose and lipid metabolism, stemness, and autophagy. Here we review the current understanding on the regulation of expression and intrinsic protumoral activity of cancer-intrinsic PD-L1.
View Article and Find Full Text PDFOral tolerance can prevent unnecessary immune responses against dietary antigens. Members of the B7 protein family play critical roles in the positive and/or negative regulation of T cell responses to interactions between APCs and T cells. V-set and Ig domain-containing 4 (VSIG4), a B7-related co-signaling molecule, has been known to act as a co-inhibitory ligand and may be critical in establishing immune tolerance.
View Article and Find Full Text PDFMultiple myeloma (MM) remains as an incurable disease, despite recent substantial improvements in treatment. Therefore, development of novel biomarkers for risk stratification and new therapeutic targets are imperative. One of the emerging treatments for MM is the immune checkpoint blockades.
View Article and Find Full Text PDFAberrant B7-H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7-H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7-H4 transcription in primary CD138(+) multiple myeloma cells and cancer cell lines.
View Article and Find Full Text PDFTumor microenvironment has emerged as one of the major obstacles against the clinical efficacy of dendritic cell (DC) vaccines. Tumor-derived IL-6 may inhibit the differentiation of hematopoietic progenitor cells into DCs and suppress DC maturation, rendering DCs tolerogenic. We hypothesized that silencing the IL-6 receptor alpha chain (IL-6Rα) would restore the functional competence of DC vaccines in mice with an IL-6-producing TC-1 tumor, and eventually give rise to protective immunity.
View Article and Find Full Text PDF