Publications by authors named "Youkeun Oh"

Microstructure optimization and high-performance material development are crucial for improving the electrochemical performance of all-solid-state batteries (ASSBs). Researchers frequently record numerous micro-scale or nano-scale electron micrographs for unbiased post-mortem analysis, performance evaluation, and improvement of ASSBs. However, these micrographs are often underutilized and typically analyzed qualitatively without ensuring an accurate representation of the experimental objectives.

View Article and Find Full Text PDF

Slowed reaction time (RT) represents both a risk factor for and a consequence of sport concussion. The purpose of this study was to determine the reliability and criterion validity of a novel clinical test of simple and complex RT, called RT(clin), in contact sport athletes. Both tasks were adapted from the well-known ruler drop test of RT and involve manually grasping a falling vertical shaft upon its release, with the complex task employing a go/no-go paradigm based on a light cue.

View Article and Find Full Text PDF

Background: Many factors contributing to anterior cruciate ligament (ACL) injury risk have been investigated. Recently, some ACL-injured individuals have presented with a decreased range of hip internal rotation compared with controls. The pathomechanics of why decreased hip range of motion increases risk of ACL injury have not yet been studied.

View Article and Find Full Text PDF

Background: Greater neck strength and activating the neck muscles to brace for impact are both thought to reduce an athlete's risk of concussion during a collision by attenuating the head's kinematic response after impact. However, the literature reporting the neck's role in controlling postimpact head kinematics is mixed. Furthermore, these relationships have not been examined in the coronal or transverse planes or in pediatric athletes.

View Article and Find Full Text PDF

ACL injury prevention programs often involve strengthening the knee muscles. We posit that an unrecognized benefit of such training is the associated increase in the tensile stiffness of the hypertrophied muscle. We tested the hypothesis that an increased quadriceps tensile stiffness would reduce peak anteromedial bundle (AM-)ACL relative strain in female knees.

View Article and Find Full Text PDF

Background: The relative contributions of an axial tibial torque and frontal plane moment to anterior cruciate ligament (ACL) strain during pivot landings are unknown.

Hypothesis: The peak normalized relative strain in the anteromedial (AM) bundle of the ACL is affected by the direction of the axial tibial torque but not by the direction of the frontal plane moment applied concurrently during a simulated jump landing.

Study Design: Controlled and descriptive laboratory studies.

View Article and Find Full Text PDF

Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.

View Article and Find Full Text PDF

Background: Gender differences exist in anterior cruciate ligament (ACL) cross-sectional area and lateral tibial slope. Biomechanical principles suggest that the direction of these gender differences should induce larger peak ACL strains in females under dynamic loading.

Hypothesis: Peak ACL relative strain during a simulated pivot landing is significantly greater in female ACLs than male ACLs.

View Article and Find Full Text PDF

Background: Knee joint morphology contributions to anterior cruciate ligament (ACL) loading are rarely considered in the injury prevention model. This may be problematic as the knee mechanical response may be influenced by these underlying morphological factors. The goal of the present study was to explore the relationship between posterior tibial slope (which has been recently postulated to influence knee and ACL loading), impact-induced anterior tibial acceleration, and resultant ACL strain during a simulated single-leg landing.

View Article and Find Full Text PDF

Background: The amount of resistance provided by the ACL (anterior cruciate ligament) to axial tibial rotation remains controversial. The goal of this study was to test the primary hypotheses that ACL transection would not significantly affect tibial rotation under the large impulsive loads associated with a simulated pivot landing but would increase anterior tibial translation.

Methods: Twelve cadaveric knees (mean age of donors [and standard deviation] at the time of death, 65.

View Article and Find Full Text PDF