Twelve undescribed optically pure monoterpenoid demethylated acylphloroglucinol derivatives, named hyperwightianols A-H (1-8), were isolated from the dried whole herb of Hypericum wightianum, along with ten structurally related known compounds (9-18). The structures of the new compounds were elucidated using UV spectroscopy, HRMS, and extensive 1D & 2D NMR experiments. Absolute configurations of the new compounds were determined via chiral HPLC resolution and electronic circular dichroism (ECD) calculations.
View Article and Find Full Text PDFPrime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells.
View Article and Find Full Text PDFNeurocognitive impairment is a prevalent and important co-morbidity in virologically suppressed people living with HIV (PLWH), yet the underlying mechanisms remain elusive and treatments lacking. Here, we explored for the first time, use of participant-derived directly induced neurons (iNs) to model neuronal biology and injury in PLWH. iNs retain age- and disease-related features of the donors, providing unique opportunities to reveal novel aspects of neurological disorders.
View Article and Find Full Text PDFNeurons rely on local protein synthesis to rapidly modify the proteome of neurites distant from the cell body. A prerequisite for local protein synthesis is the presence of ribosomes in the neurite, but the mechanisms of ribosome transport in neurons remain poorly defined. Here, we find that ribosomes hitchhike on mitochondria for their delivery to the dendrite of a sensory neuron in .
View Article and Find Full Text PDFGlucose, the primary cellular energy source, is metabolized through glycolysis initiated by the rate-limiting enzyme hexokinase (HK). In energy-demanding tissues like the brain, HK1 is the dominant isoform, primarily localized on mitochondria, and is crucial for efficient glycolysis-oxidative phosphorylation coupling and optimal energy generation. This study unveils a unique mechanism regulating HK1 activity, glycolysis and the dynamics of mitochondrial coupling, mediated by the metabolic sensor enzyme O-GlcNAc transferase (OGT).
View Article and Find Full Text PDFGarciyunnanones A-R (1-18), eighteen undescribed caged polycyclic polyprenylated acylphloroglucinols, two undescribed biogenetic congeners (19-20), and nineteen known analogues (21-39), were isolated from the stem barks of Garcinia yunnanensis Hu. All of these isolates are decorated with a C-5 lavandulyl substituent. Their structures and absolute configurations were confirmed by HRESIMS, 1D & 2D NMR spectroscopic analysis, quantum chemical calculations of electronic circular dichroism data, and single-crystal X-ray diffraction analysis.
View Article and Find Full Text PDFSeven pairs of undescribed monoterpenoid polyprenylated acylphloroglucinol enantiomers [(±)-hypermonanones A-G (1-7)], together with three known analogues, were identified from the whole plant of Hypericum monanthemum Hook. The structures of these compounds were determined by analyses of their UV, HRESIMS, 1D/2D NMR spectroscopic data, and NMR calculations. The absolute configurations of these compounds were assigned by ECD calculations after chiral HPLC separation.
View Article and Find Full Text PDFOuter radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ.
View Article and Find Full Text PDFMitochondria transport is crucial for axonal mitochondria distribution and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In C.
View Article and Find Full Text PDFPrime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small deletions, or insertions at a specific genomic locus, a strategy that shows great promise for creating "Disease in a dish" models. To improve the effectiveness of prime editing in hPSCs, we systematically compared and combined the "inhibition of mismatch repair pathway and p53" on top of the "PEmax" to generate an all-in-one "PE-Plus" prime editor. We show that PE-Plus conducts the most efficient editing among the current PE tools in hPSCs.
View Article and Find Full Text PDFA meta-analysis was performed to investigate the efficacy of ultrapulse carbon dioxide dot matrix laser treatment for patients with facial scars. PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure, China Biomedical Literature Database, and Wanfang Database were systematically searched for randomised controlled trials (RCTs) investigating ultrapulse carbon dioxide dot matrix laser treatment for facial scars, and the search was conducted from the time of database inception to July 2023. The retrieved literature was screened independently by two researchers, and data extraction and quality assessments were performed.
View Article and Find Full Text PDFAn actin-spectrin lattice, the membrane periodic skeleton (MPS), protects axons from breakage. MPS integrity relies on spectrin delivery via slow axonal transport, a process that remains poorly understood. We designed a probe to visualize endogenous spectrin dynamics at single-axon resolution in vivo.
View Article and Find Full Text PDFPrime editing introduces single-nucleotide polymorphism changes, small deletions, or insertions at a specific genome site without double-stranded DNA breaks or the need for the donor template. Here, we present a protocol to design, conduct, and evaluate prime editing in human pluripotent stem cells. We describe steps for pegRNA and nicking sgRNA design and cloning, the prime editing tool electroporation, and the efficiency evaluation using Miseq.
View Article and Find Full Text PDFGlucose, the primary cellular energy source, is metabolized through glycolysis initiated by the rate-limiting enzyme Hexokinase (HK). In energy-demanding tissues like the brain, HK1 is the dominant isoform, primarily localized on mitochondria, crucial for efficient glycolysis-oxidative phosphorylation coupling and optimal energy generation. This study unveils a unique mechanism regulating HK1 activity, glycolysis, and the dynamics of mitochondrial coupling, mediated by the metabolic sensor enzyme O-GlcNAc transferase (OGT).
View Article and Find Full Text PDFMitochondria transport is crucial for mitochondria distribution in axons and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In , is the only single gene described so far, other than kinesin-1, that is absolutely required for axonal mitochondria localization.
View Article and Find Full Text PDFLargemouth bass (Micropterus salmoides) is an important economic freshwater aquaculture fish originating from North America. However, the frequent outbreaks of Micropterus salmoides rhabdovirus (MSRV) have seriously limited the healthy development of Micropterus salmoides farming industry. In the present study, a strain of MSRV was isolated and identified from infected largemouth bass by PCR, transmission electron micrograph observation and genome sequences analysis, and tentatively named MSRV-HZ01 strain.
View Article and Find Full Text PDFA 28 day feeding trial was conducted to investigate the growth performance, immune response and intestinal microbiota of laminarin (LAM) supplemented diets in juvenile largemouth bass (). Four hundred and eighty fish (initial average weight: 0.72 ± 0.
View Article and Find Full Text PDFPrecise gene editing in human pluripotent stem cells (hPSCs) holds great promise for studying and potentially treating human diseases. Both prime editing and base editing avoid introducing double strand breaks, but low editing efficiencies make those techniques still an arduous process in hPSCs. Here we report that co-delivering of p53DD, a dominant negative fragment of p53, can greatly enhance prime editing and cytosine base editing efficiencies in generating precise mutations in hPSCs.
View Article and Find Full Text PDFNasopharyngeal carcinoma (NPC) has high incidence in China and East and Southeast Asia. The study was performed to investigate the effect of microRNA3942-3p (miR-3942-3p) on the radiosensitivity of NPC. Compared with non-cancer tissue, NPC had significantly lower miR-3942-3p expression.
View Article and Find Full Text PDFMitochondrial defects are tightly linked to axon degeneration, yet the underlying cellular mechanisms remain poorly understood. In PVQ axons that lack mitochondria degenerate spontaneously with age. Using an unbiased genetic screen, we found that cell-specific activation of CaMKII/UNC-43 suppresses axon degeneration due to loss of mitochondria.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeat (CRISPR) and other gene editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) show great promises for research and therapeutic applications. One major concern is the off-target effects generated by these nucleases at unintended genomic sequences. In silico methods are usually used for off-target site prediction.
View Article and Find Full Text PDF