Publications by authors named "Youjie Hua"

It is crucial to explore the intrinsic mechanisms that influence thermometric sensitivity. This study investigates the optical performance of materials with the same crystal structure but different phonon energies. LnOS:Er/Yb (Ln = La/Gd/Y) phosphors with similar morphology and particle sizes were prepared to systematically study the influence of different phonon energy matrices on optical properties.

View Article and Find Full Text PDF

This article describes a new kind of afterglow material, ScBaZnGaO:Bi, which was synthesized through a high-temperature solid-phase method. Its crystal structure, photoluminescent characteristics, and afterglow characteristics were studied and analyzed. Upon excitation at 344 nm, ScBaZnGaO:Bi exhibits broadband emission with a central wavelength located at 571 nm (fwhm = 172.

View Article and Find Full Text PDF

Lanthanide-doped fluoride nanoparticles (NPs) showcase adjustable X-ray-excited persistent luminescence (XEPL), holding significant promise for applications in three-dimensional (3D) imaging through the creation of flexible X-ray detectors. However, a dangerous high X-ray irradiation dose rate and complicated heating procedure are required to generate efficient XEPL for high-resolution 3D imaging, which is attributed to a lack of strategies to significantly enhance the XEPL intensity. Here we report that the XEPL intensity of a series of lanthanide activators (Dy, Pr, Er, Tm, Gd, Tb) is greatly improved by constructing dual heterogeneous interfaces in a double-shell nanostructure.

View Article and Find Full Text PDF

White-light diodes (WLEDs) are widely used in high-brightness applications owing to their outstanding advantages. However, current methods for preparing commercial WLEDs significantly deteriorate their optical properties and limit their use in high-power applications. To address this, inorganic materials, such as phosphor-in-glass (PiG), have been recently investigated as practical alternatives.

View Article and Find Full Text PDF

External manipulation of emission colour is of significance for scientific research and applications, however, the general stimulus-responsive colour modulation method requires both stringent control of microstructures and continously adjustment of particular stimuli conditions. Here, we introduce pathways to manipulate the kinetics of time evolution of both intensity and spectral characteristics of X-ray excited afterglow (XEA) by regioselective doping of lanthanide activators in core-shell nanostructures. Our work reported here reveals the following phenomena: 1.

View Article and Find Full Text PDF

A series of RbKNa(LiSiO):Eu(0 ≤ ≤ 1) phosphors were successfully synthesized through a high-temperature solid-state reaction. The introduction of K into the RbNa(LiSiO):Eu phosphor to partially or completely replace Rb allows the emission spectrum to be modulated from blue ( = 473 nm, FWHM = 22.5 nm) to a narrow cyan band ( = 485 nm, FWHM = 21.

View Article and Find Full Text PDF

Achieving bright photon upconversion under low irradiance is of great significance and finds many stimulating applications from photovoltaics to biophotonics. However, it remains a daunting challenge to significantly intensify upconversion luminescence in small nanoparticles with a simple structure. Herein, we report the amplification of photon upconversion through engineering interfacial density of states between the core and the shell layer in sub-10 nm colloidal rare-earth ions doped fluoride nanocrystals.

View Article and Find Full Text PDF

Phosphor is an important part of the new generation of light-emitting diodes (LEDs), which requires high luminous intensity and high-temperature resistance. In this study, a series of excellent (BaCa)AlSiON:Eu phosphors was developed, which were synthesized by a high-temperature solid-state reaction in a reducing atmosphere. In addition, the crystallinity and luminescence intensity of the samples could be enhanced by some amount of Ca substitution.

View Article and Find Full Text PDF

Scintillation-based X-ray excited optical luminescence (XEOL) imaging shows great potential applications in the fields of industrial security inspection and medical diagnosis. It is still a great challenge to achieve scintillators simultaneously with low toxicity, high stability, strong XEOL intensity, and weak afterglow as well as simple device processibility with weak light scattering. Herein, we introduce ethylenediaminetetraacetate (EDTA)-capped NaGdF:10Ce/18Tb nanoparticles (NPs) as a highly sensitive nanoscintillator, which meets all of the abovementioned challenges.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) has attracted much attention with its powerful trace detection and analysis capabilities, especially biological and environmental molecules. However, building a protein SERS detection platform based on semiconductor devices is a huge challenge. Herein, through the synergy of NH and nickel foam, a large-sized semiconductor tungsten oxide hydrate platform (WOHP) was synthesized.

View Article and Find Full Text PDF

Fluorescence intensity ratio-based temperature sensing with a self-referencing characteristic is highly demanded for reliable and accurate sensing. Although enormous efforts have been devoted to explore high-performance luminescent temperature probes, it remains a daunting challenge to achieve highly relative sensitivity which determines temperature resolution. Herein, we employ a novel strategy to achieve temperature probes with ultrahigh relative sensitivity through integrating both positive and negative thermal quenching effect into a hydrogel.

View Article and Find Full Text PDF

The surface plasmon resonance (SPR) of metal nanostructures is known to affect the optical properties of solid luminescent materials. Ag nanoparticles were first used to obtain a wider color gamut in rare-earth-doped phosphor-in-glass for application as color filters for white light emitting diodes. The existence of Ag nanocrystallites at nanometer scale and the independent integrity of the phosphor luminescence center in the amorphous glass environment were demonstrated.

View Article and Find Full Text PDF

Realizing multicolored luminescence in two-dimensional (2D) nanomaterials would afford potential for a range of next-generation nanoscale optoelectronic devices. Moreover, combining fine structured spectral line emission and detection may further enrich the studies and applications of functional nanomaterials. Herein, a lanthanide doping strategy has been utilized for the synthesis of 2D ZnSe:Er nanosheets to achieve fine-structured, multicolor luminescence spectra.

View Article and Find Full Text PDF

The development of integrated multifunctional materials with transparent characteristics meets the requirements of optoelectronics and communication. The coupling of stimuli-responsive materials has become a frequently considered strategy. Experimentalists not only search for photonic materials with excellent physical and chemical properties, but also pursue precise and reversible spectral modification.

View Article and Find Full Text PDF

Phosphor-in-glass (PiG) is a novel fluorescent color conversion material that is an excellent choice for preparing wide-color gamut white LEDs due to its excellent thermal stability, high efficiency and facile preparation process. To the best of our knowledge, this paper is the first to widen the color gamut of the white LED from 77.33% to 92.

View Article and Find Full Text PDF

A series of fluorophosphates glass codoped with active Er ions and sensitizing ions of different systems were prepared to systematically study their sensitization effect in order to obtain efficient MIR luminescence. Differential scanning calorimetry curve indicates the favorable thermal stability of the glass host. A comprehensive analysis of the sensitization mechanism is given based on the synthesis considering the position and intensity of fluorescence emissions together with the lifetime of Er:I active level.

View Article and Find Full Text PDF

Recently, rare-earth-doped infrared (IR) luminescent glasses have drawn massive attention due to their potential applications in military, medical, and communications fields. In this Letter, we present a system of oxychloride Si-Ge-O-Cl glasses, suitable for rare-earth doping, which has been developed as a new, to the best of our knowledge, choice for IR luminescent materials. Raman spectra show a looser glass network because of the decreased phonon energy and density compared to the one in heavy-metal oxide glasses.

View Article and Find Full Text PDF

Lanthanide-doped optical functional glasses have received substantial attention in recent years owing to their excellent upconversion (UC) and infrared (IR) performance pumping when used in a semiconductor laser. In this study, the luminescence properties of Ho ions were improved through the design of components used to modulate the microenvironment of the glass. To the best of our knowledge, this is a novel approach to enhancing the UC and IR emissions, and results in up to more than 130% improvement by regulating a tight network glass structure.

View Article and Find Full Text PDF

Metal-organic framework (MOF) glasses are a newly discovered family of melt-quenched glasses. Despite considerable progress in understanding the nature of MOF glasses, their photonic functionalities have not been found so far. Here, we report on the first breakthrough regarding the photonic functionalities of MOF glasses, that is, finding of the luminescence in melt-quenched MOF glasses.

View Article and Find Full Text PDF

Rare-earth-doped optical functional glasses have attracted great interest for their excellent luminous performance in the applications of optical communications and biomedical systems. To the best of our knowledge, it is demonstrated for the first time that more than seven times' enhancement of luminescence performance in the mid-infrared region (MIR) has been obtained in germanosilicate glasses controlled by ZnF. Larger absorption and emission cross sections of the Ho:  I5→I5 transition indicate that this kind of germanosilicate-zinc glass may provide high gain as a good medium for an efficient 2.

View Article and Find Full Text PDF

Higher concentrations of rare earth (RE) ions in glass materials would be favorable for the output of single-frequency fiber lasers. In this Letter, we adjusted the topological structure of glass networks through controlling the numbers of non-bridging oxygens (NBOs) and bridging oxygens (BOs) by tuning the composition of the glasses, hence increasing the RE doping concentration of germanosilicate glasses. The increased flexibility of the glass networks favors the distribution of clusters of RE ions to decrease fluorescence quenching, which was validated by both our experimental and theoretical results.

View Article and Find Full Text PDF

Bi can exist in a variety of chemical states (with varying ionic charges) and the microstructure of the glass surrounding the ions can be engineered to manipulate the chemical state. In this work, efficient enhancement of Ho3+ emission is observed with the change in local glass environment around Bi by adding Al2O3 to multi-component germanosilicate glass. In this multi-component glass, Al3+ can form tetrahedral AlO4 by accepting the non-bridging oxygen (NBO) and then, the addition of the AlO4-tetrahedron to the glass network facilitates the diffusion of alkali metals.

View Article and Find Full Text PDF

A novel broadband emission phosphor Sr(3-2x) Li(1+ x) MgV3 O12 : xEu3+ was synthesized by a solid-state reaction method. Then discussed the luminous property under the influence of temperature and doping density of Eu3+, was discussed. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence spectra were used to characterize the feature of Sr(3-2x)Li(1+x)MgV3O12 : xEu3+.

View Article and Find Full Text PDF