Publications by authors named "Youichi Tamai"

Model studies have shown that peptides derived from the N-terminal region of bovine lactoferrin (Lf-B) exhibit antitumor activity against certain cell lines. This activity is due primarily to the peptides' apoptogenic effect. Several reports indicate that cationic residues clustered in two regions of the peptide sequence can be shuffled into one region and thereby increase cytotoxic activity, although the mechanism of this enhanced cytotoxic effect has not been clarified.

View Article and Find Full Text PDF

A Na(+)/H(+) antiporter gene (CvNHA1) was cloned from the salt-tolerant yeast Candida versatilis. CvNHA1 encodes an antiporter with a typical yeast plasma membrane Na(+)/H(+) antiporter structure. Transcription of CvNHA1 in C.

View Article and Find Full Text PDF

We cloned the glycerol 3-phosphate dehydrogenase (GPDH) gene (CvGPD1) from salt-tolerant yeast Candida versatilis. When CvGPD1 was expressed in glycerol synthesis-deficient Saccharomyces cerevisiae cells, the salt tolerance of the recombinant strain was enhanced, and NADP(+)-dependent GPDH (EC 1.1.

View Article and Find Full Text PDF

Phospholipase B (PLB) from the asporogenous yeast Candida utilis was purified to homogeneity from a culture broth. The apparent molecular mass was 90-110 kDa by SDS-PAGE. The enzyme had two pH optima, one acidic (pH 3.

View Article and Find Full Text PDF

In the course of a study of cell wall proteins from the salt-tolerant yeast Zygosaccharomyces rouxii, a protein that increased its expression as the NaCl concentration of the culture medium increased was identified. Several degenerate primers were constructed based on partial amino acid sequences of this protein and were used in PCR amplification of a gene termed ZrATP2. The amino acid sequence deduced from nucleotide sequence of the gene revealed that ZrATP2 encodes the beta subunit of mitochondrial F1 ATPase.

View Article and Find Full Text PDF

Here, we present the crystal structure of the family 31 carbohydrate-binding module (CBM) of beta-1,3-xylanase from Alcaligenes sp. strain XY-234 (AlcCBM31) determined at a resolution of 1.25A.

View Article and Find Full Text PDF

We cloned two genes from the salt-tolerant yeast Zygosaccharomyces rouxii: ZrSOD2 for the cell membrane Na(+)/H(+)-antiporter and ZrPMA1 for the cell membrane H(+)-ATPase. The products of these genes play cooperative roles in the salt-tolerance of Z. rouxii, and the function of the ZrPMA1 product is regulated at the transcription level.

View Article and Find Full Text PDF

We examined the effects of heterologous expression of the open reading frames (ORF) of two genes on salt tolerance and glycerol production in a Saccharomyces cerevisiae strain deficient in glycerol synthesis (gpd1Deltagpd2Delta). When the ORF of the Zygosaccharomyces rouxii glycerol 3-phosphate dehydrogenase gene (ZrGPD1) was expressed under the control of the GAL10 promoter, salt tolerance and glycerol production increased; when the ORF of the glycerol dehydrogenase gene (ZrGCY1) was expressed under the control of the GAL1 promoter, no such changes were observed. Zrgcy1p had a weak effect on glycerol production.

View Article and Find Full Text PDF

The antimutagenic activity of protein-constituting amino acids except histidine on the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in vitro using Salmonella typhinurium TA-100 as an indicator bacterium (Ames test), and concentrations (IC50) of amino acids that inhibit 50% of the mutagenecity were measured. Cysteine was found to be most active and glycine, tryptophan, lysine, and arginine were strong antimutagenic amino acids. Other amino acids showed moderate or weak antimutagenic activities, depending on the amino acids.

View Article and Find Full Text PDF

The effect of replacement of negatively charged amino acid residues on the function of Na+ transport proteins of the salt-tolerant yeast Zygosaccharomyces rouxii was examined by heterologous expression of mutant proteins in a strain of Saccharomyces cerevisiae, RH16.6, that lacks native Na+-ATPase activity due to null mutations of ENA1, ENA2, ENA3, and ENA4. Mutants of Na+/H+ antiporter gene (ZrSOD2) and Na+-ATPase gene (ZrENA1) of Z.

View Article and Find Full Text PDF

The salt-tolerant yeast Zygosaccharomyces rouxii can adjust its osmotic balance when responding to osmotic shock by accumulating glycerol as the compatible osmolyte. However, the mechanism of glycerol production in Z. rouxii cells and its genetic regulation remain to be elucidated.

View Article and Find Full Text PDF