Japanese encephalitis virus (JEV) is a neurotropic zoonotic pathogen that poses a serious threat to public health. Currently, there is no specific therapeutic agent available for JEV infection, primarily due to the complexity of its infection mechanism and pathogenesis. Extracellular vesicles (EVs) have been known to play an important role in viral infection, but their specific functions in JEV infection remain unknown.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Africa swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a highly contagious hemorrhagic disease that can result in up to 100% lethality in both wild and domestic swine, regardless of breed or age. The ongoing ASF pandemic poses significant threats to the pork industry and food security, with serious implications for the sanitary and socioeconomic system. Due to the limited understanding of ASFV pathogenesis and immune protection mechanisms, there are currently no safe and effective vaccines or specific treatments available, complicating efforts for prevention and control.
View Article and Find Full Text PDFDendritic cells (DCs) play a central role in the initiation of the adaptive immune response. Here, we present a protocol for isolating and transcriptionally profiling antigen-presenting cells (APCs) from the mouse lung and mediastinal lymph nodes (MLNs) following intranasal immunization. We describe steps for preparing single-cell suspensions from the lung and MLN, along with the detection and RNA sequencing (RNA-seq) of antigen-presenting DCs.
View Article and Find Full Text PDFFeline panleukopenia virus (FPV) represents a significant health threat to the kittens. While traditional vaccines administered via subcutaneous or intramuscular injection are effective, they can induce stress and adverse reactions. Moreover, unvaccinated kittens visiting veterinary clinics risk exposure to FPV, increasing their susceptibility to infection.
View Article and Find Full Text PDFBackground: Japanese encephalitis virus (JEV) is a leading cause of viral encephalitis worldwide. JEV exhibits significant neuroinvasiveness and neurotoxicity, resulting in considerable damage to the nervous system. Japanese encephalitis is associated with high morbidity and mortality rate, seriously harming both human health and livestock production.
View Article and Find Full Text PDFFlaviviruses in the Japanese encephalitis virus (JEV) serogroup, such as JEV, West Nile virus, and St. Louis encephalitis virus, can cause severe neurological diseases. The nonstructural protein 1 (NS1) is a multifunctional protein of flavivirus that can be secreted by infected cells and circulate in the host bloodstream.
View Article and Find Full Text PDFJapanese encephalitis virus (JEV) is a neurotropic pathogen that causes lethal encephalitis. The high susceptibility and massive proliferation of JEV in neurons lead to extensive neuronal damage and inflammation within the central nervous system. Despite extensive research on JEV pathogenesis, the effect of JEV on the cellular composition and viral tropism towards distinct neuronal subtypes in the brain is still not well comprehended.
View Article and Find Full Text PDFFerroptosis is a newly discovered prototype of programmed cell death (PCD) driven by iron-dependent phospholipid peroxidation accumulation, and it has been linked to numerous organ injuries and degenerative pathologies. Although studies have shown that a variety of cell death processes contribute to JEV-induced neuroinflammation and neuronal injury, there is currently limited research on the specific involvement of ferroptosis. In this study, we explored the neuronal ferroptosis induced by JEV infection in vitro and in vivo.
View Article and Find Full Text PDFBackground: West Nile virus is a severe zoonotic pathogen that can cause severe central nervous system symptoms in humans and horses, and is fatal for birds, chickens and other poultry. With no specific drugs or vaccines available, antibody-based therapy is a promising treatment. This study aims to develop neutralizing antibodies against West Nile virus and assess their cross-protective potential against Japanese encephalitis virus.
View Article and Find Full Text PDFPancreatic cancer is the seventh leading cause of cancer-related death worldwide, and despite advancements in disease management, the 5 -year survival rate stands at only 12%. Triptolides have potent anti-tumor activity against different types of cancers, including pancreatic cancer, however poor solubility and toxicity limit their translation into clinical use. We synthesized a novel pro-drug of triptolide, ()-19-[(1'-benzoyloxy-1'-phenyl)-methylidene]-Triptolide (CK21), which was formulated into an emulsion for in vitro and in vivo testing in rats and mice, and used human pancreatic cancer cell lines and patient-derived pancreatic tumor organoids.
View Article and Find Full Text PDFThe current paradigm indicates that naive T cells are primed in secondary lymphoid organs. Here, we present evidence that intranasal administration of peptide antigens appended to nanofibers primes naive CD8 T cells in the lung independently and prior to priming in the draining mediastinal lymph node (MLN). Notably, comparable accumulation and transcriptomic responses of CD8 T cells in lung and MLN are observed in both Batf3KO and wild-type (WT) mice, indicating that, while cDC1 dendritic cells (DCs) are the major subset for cross-presentation, cDC2 DCs alone are capable of cross-priming CD8 T cells both in the lung and draining MLN.
View Article and Find Full Text PDFHistone methylation is an important epigenetic modification that affects various biological processes, including the inflammatory response. In this study, we found that infection with Japanese encephalitis virus (JEV) leads to an increase in H3K27me3 in BV2 microglial cell line, primary mouse microglia and mouse brain. Inhibition of H3K27me3 modification through EZH2 knockdown and treatment with EZH2 inhibitor significantly reduces the production of pro-inflammatory cytokines during JEV infection, which suggests that H3K27me3 modification plays a crucial role in the neuroinflammatory response caused by JEV infection.
View Article and Find Full Text PDFTestosterone is essential to human growth and development as well as immune regulation. Zika virus (ZIKV), an emerging arbovirus associated with neurological complications including neuroinflammation, can also cause testicular damage and decrease testosterone secretion. However, whether the dysregulation of testosterone plays a role in the process of neuroinflammation during ZIKV pathogenesis is still unclear.
View Article and Find Full Text PDFInfections caused by range from mild to severe and frequently recur. Emerging evidence suggests that the site and severity of infection drive the potency of elicited immune responses and susceptibility to recurrent infection. In this study, we used tractable mouse models of skin infection (SSTI) and pneumonia to determine the relative magnitude of elicited protective immunity.
View Article and Find Full Text PDFZika virus (ZIKV) can be transmitted from mother to fetus during pregnancy, causing adverse fetal outcomes. Several studies have indicated that ZIKV can damage the fetal brain directly; however, whether the ZIKV-induced maternal placental injury contributes to adverse fetal outcomes is sparsely defined. Here, we demonstrated that ZIKV causes the pyroptosis of placental cells by activating the executor gasdermin E (GSDME) in vitro and in vivo.
View Article and Find Full Text PDFThe Encephalomyocarditis virus (EMCV) is one of the major zoonosis pathogens, and it can cause acute myocarditis in young pigs or reproductive failure in sows. EMCV has been recognized as a pathogen infecting many species and causes substantial economic losses worldwide. Therefore, the development of a rapid, sensitive, and accurate detection of this virus is essential for the diagnosis and control of the EMCV-induced disease.
View Article and Find Full Text PDFJapanese encephalitis virus (JEV) is an important zoonotic pathogen, which causes central nervous system symptoms in humans and reproductive disorders in swine. It has led to severe impacts on human health and the swine industry; however, there is no medicine available for treating yet. Therefore, vaccination is the best preventive measure for this disease.
View Article and Find Full Text PDFIn flavivirus, the furin-mediated cleavage of prM is mandatory to produce infectious particles, and the immature particles containing uncleaved prM cannot undergo membrane fusion and release to the extracellular environment. However, the detailed relationship between viral replication or pathogenicity and furin in Japanese encephalitis virus (JEV) hasn't been clarified. Here, JEV with the mutations in furin cleavage sites and its nearby were constructed.
View Article and Find Full Text PDFFeline coronavirus (FCoV) infections present as one of two forms: a mild or symptom-less enteric infection (FEC) and a fatal systemic disease termed feline infectious peritonitis (FIP). The lack of epidemiology of FCoV in central China and the reason why different symptoms are caused by viruses of the same serotype have motivated this investigation. Clinical data of 81 suspected FIP cases, 116 diarrhea cases and 174 healthy cases were collected from veterinary hospitals using body cavity effusion or fecal samples.
View Article and Find Full Text PDFThe African swine fever virus (ASFV) is a dsDNA virus that can cause serious, highly infectious, and fatal diseases in wild boars and domestic pigs. The ASFV has brought enormous economic loss to many countries, and no effective vaccine or treatment for the ASFV is currently available. Therefore, the on-site rapid and accurate detection of the ASFV is key to the timely implementation of control.
View Article and Find Full Text PDFThe current paradigm that subunit vaccines require adjuvants to optimally activate innate immunity implies that increased vaccine reactogenicity will invariably be linked to improved immunogenicity. Countering this paradigm, nanoparticulate vaccines have been reported to act as delivery systems for vaccine antigens and induce immunity without the need for exogenous adjuvants or local inflammation; however, the mechanisms underlying the immunogenicity of nanoparticle vaccines are incompletely identified. Here, we show that antigens displayed on self-assembling nanofiber scaffolds and delivered intranasally are presented by CD103 and CD11b lung dendritic cells that up-regulate CD80 and migrate into the draining lymph node (LN).
View Article and Find Full Text PDFRecurrent infections are common, despite robust immune responses. infection elicited protective antibody and T cell responses in mice that expressed the Major Histocompatibility Complex (MHC) of the H-2 haplotype, but not H-2, demonstrating that host genetics drives individual variability. Vaccination with a-toxin or leukotoxin E (LukE) elicited similar antibody and T cell responses in mice expressing H-2 or H-2, but vaccine-elicited responses were inhibited by concomitant infection in H-2-expressing mice.
View Article and Find Full Text PDFInfluenza vaccines that can be administered intranasally or by other needle-free delivery routes have potential advantages over injected formulations in terms of patient compliance, cost, and ease of global distribution. Supramolecular peptide nanofibers have been investigated previously as platforms for vaccines and immunotherapies and have been shown to raise immune responses in the absence of exogenous adjuvants and without measurable inflammation. However, at present it has not been tested whether the immunogenicity of these materials extends to the intranasal route.
View Article and Find Full Text PDFSelf-assembled peptide nanofibers raise significant antibody and T cell responses without adjuvants, but the mechanism by which they achieve this has not been fully elucidated. Myeloid differentiation primary response gene 88 (MyD88) previously has been shown to be critical for the antibody response to antigens presented by peptide nanofibers. The present study sought to determine the cell subset in which MyD88 is essential for T cell responses.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) and liver cirrhosis are associated with high mortality worldwide. Currently, alpha-fetoprotein (AFP) is used as a standard serum marker for the detection of HCC, but its sensitivity and specificity are unsatisfactory, and optimal diagnostic markers for cirrhosis are lacking. We previously reported that growth differentiation factor 15 (GDF15) was significantly induced in HCV-infected hepatocytes.
View Article and Find Full Text PDF