Publications by authors named "Youguo Pi"

A new dynamic model for friction is proposed based on the commonality between frictional order dynamics and friction behavior. The model can achieve accurate modeling both in the sliding and the pre-sliding region with fewer parameters. Simulation results of the FOFM are illustrated with the parameters identification using the particle swarm optimization algorithm.

View Article and Find Full Text PDF

In order to achieve a desired control performance characterized by satisfying specifications in both frequency-domain and time-domain simultaneously, an optimal fractional order proportional integral derivative (PID) controller design strategy is proposed based on analytical calculation and Differential Evolution algorithm for a permanent magnet synchronous motor (PMSM) servo system in this paper. In this controller design, the frequency-domain specifications can guarantee the system stability with both gain margin and phase margin, and also the system robustness to loop gain variations. The time-domain specifications can ensure the desired step response performance with rapid rising curve, constrained overshoot, and proper power consuming.

View Article and Find Full Text PDF

A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform.

View Article and Find Full Text PDF

This paper proposes a smooth switching scheme with separate control strategies on low speed mode and high speed mode for permanent magnet synchronous motor (PMSM) sensorless control to improve the overall performance in full speed range. Constant voltage/frequency tuning method is used on low speed mode because the rotor position can hardly be estimated precisely at low speed. Along with the increasing speed, the control strategy can be switched to high speed mode smoothly when current and speed meet the given requirements.

View Article and Find Full Text PDF

The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant.

View Article and Find Full Text PDF

A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system.

View Article and Find Full Text PDF

In a reference of the previous work, a new systematic design method for fractional order proportional and derivative (FOPD) controller is proposed for a class of typical second-order plants. Simulation and experimental results in the reference show that, the dynamic performance and robustness with the designed FOPD controller outperforms that with the optimized traditional integer order proportional integral (IOPI) controller at normal speed. Furthermore, it is found that, for the ultra low-speed position tracking with a significant friction effect, the tracking performance using the designed FOPD controller is much better than that using the optimized IOPI controller.

View Article and Find Full Text PDF

Cogging effect which can be treated as a type of position-dependent periodic disturbance, is a serious disadvantage of the permanent magnetic synchronous motor (PMSM). In this paper, based on a simulation system model of PMSM position servo control, the cogging force, viscous friction, and applied load in the real PMSM control system are considered and presented. A dual high-order periodic adaptive learning compensation (DHO-PALC) method is proposed to minimize the cogging effect on the PMSM position and velocity servo system.

View Article and Find Full Text PDF