Porous organic polymers (POPs) are a novel class of polymeric materials with high flexibility and designability for building structures. Herein, a phthalocyanine-based porous organic polymer (PcPOP) was constructed on copper foil from HPc(ethynyl) [Pc(ethynyl) = 2(3),9(10),16(17),23(24)-tetra(ethynyl)phthalocyanine] by the coupling reaction. Benefiting from the uniformly distributed electron-rich nitrogen atoms in the Pc structure and the sp-hybridized carbons in the acetylenic linkage, Li intercalation in the porous organic polymer would be improved and stabilized.
View Article and Find Full Text PDFHighly enantioselective catalytic asymmetric intramolecular cascade imidization-nucleophilic addition-lactamization of N(1)-alkylethane-1,2-diamine with methyl 2-formylbenzoate catalyzed by a chiral phosphoric acid represents the first efficient method for the preparation of medicinally interesting chiral 2,3-dihydro-1H-imidazo[2,1-a]isoindol-5(9bH)-ones with high yields and excellent enantioselectivities. This strategy has been shown to be quite general toward various methyl 2-formylbenzoates.
View Article and Find Full Text PDFSubstituted 2-formylarylboronic acids were successfully employed as substrates for asymmetric Suzuki-Miyaura coupling. By virtue of the coupling with dialkoxyphosphinyl substituted naphthyl bromides and 2-nitronaphthalen-1-yl triflouromethanesulfonate, a series of novel multifunctionalized axially chiral biaryls were prepared in 53-97% yields with up to 97% ee using palladium-Cy-MOP as the catalyst. The methodology provides a highly efficient and practical strategy for the synthesis of novel multifunctionalized axially chiral biaryls.
View Article and Find Full Text PDF