Publications by authors named "Yougan Cheng"

Quantitative systems pharmacology (QSP) places an emphasis on dynamic systems modeling, incorporating considerations from systems biology modeling and pharmacodynamics. The goal of QSP is often to quantitatively predict the effects of clinical therapeutics, their combinations, and their doses on clinical biomarkers and endpoints. In order to achieve this goal, strategies for incorporating clinical data into model calibration are critical.

View Article and Find Full Text PDF

Movement of cells and tissues is essential at various stages during the lifetime of an organism, including morphogenesis in early development, in the immune response to pathogens, and during wound-healing and tissue regeneration. Individual cells are able to move in a variety of microenvironments (MEs) (A glossary of the acronyms used herein is given at the end) by suitably adapting both their shape and how they transmit force to the ME, but how cells translate environmental signals into the forces that shape them and enable them to move is poorly understood. While many of the networks involved in signal detection, transduction and movement have been characterized, how intracellular signals control re-building of the cyctoskeleton to enable movement is not understood.

View Article and Find Full Text PDF

Quantitative systems pharmacology (QSP) modeling has become increasingly important in pharmaceutical research and development, and is a powerful tool to gain mechanistic insights into the complex dynamics of biological systems in response to drug treatment. However, even once a suitable mathematical framework to describe the pathophysiology and mechanisms of interest is established, final model calibration and the exploration of variability can be challenging and time consuming. QSP models are often formulated as multi-scale, multi-compartment nonlinear systems of ordinary differential equations.

View Article and Find Full Text PDF

Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty).

View Article and Find Full Text PDF

Identifying feasible steady state solutions of a brain energy metabolism model is an inverse problem that allows infinitely many solutions. The characterization of the non-uniqueness, or the uncertainty quantification of the flux balance analysis, is tantamount to identifying the degrees of freedom of the solution. The degrees of freedom of multi-compartment mathematical models for energy metabolism of a neuron-astrocyte complex may offer a key to understand the different ways in which the energetic needs of the brain are met.

View Article and Find Full Text PDF

This paper develops a three-dimensional spatially distributed model of brain cellular metabolism and investigates how the locus of the synaptic activity in reference to the capillaries and diffusion affects the behavior of the model, a type of analysis which is impossible to carry out in spatially lumped models, which are shown to be consistent spatially averaged approximations of the distributed model. To avoid a geometrically detailed modeling of the complex structure of the tissue consisting of different cell types and the extracellular space, the distributed model is based on a novel multi-domain formulation of reaction-diffusion equations, accounting also for separate mitochondria. The model reduction relating the spatially distributed model and lower dimensional reduced models, including the well-mixed spatially lumped compartment model, is carefully explained.

View Article and Find Full Text PDF