Optical information encryption and safety have aroused great attention since they are closely correlated to data protection and information safety. The development of multiple stimuli-response optical materials for constructing large-capacity information encryption and safety is very important for practical applications. Carbon dots (CDs) have many gratifying merits, such as polychromatic emission, diverse luminous categories, and stable physicochemical properties, and are considered as one of the most ideal candidates for information protection.
View Article and Find Full Text PDFPhosphor-based security techniques have received widespread attention because they can rely on fascinating optical properties (including multicolor emission and various luminous categories) to meet information protection requirements. Carbon dots (CDs) with multicolor fluorescence (FL) and room-temperature phosphorescence (RTP) show enormous potential in advanced information encryption, yet the achievement of tunable multimodal printable CDs confronts numerous challenges. Herein, liquid CDs with color-tunable properties ranging from blue to red are obtained, and the decay time-tunable RTPs of powdered CDs are achieved with a post-treatment of urea in an o-phenylenediamine/HO/HPO system.
View Article and Find Full Text PDFElectronic textiles (e-textiles) that combine the wearing comfort of textiles and the functionality of soft electronics are highly demanded in wearable applications. However, fabricating robust high-performance stretchable e-textiles with good abrasion resistance and high-resolution aesthetic patterns for high-throughput manufacturing and practical applications remains challenging. Herein, the authors report a new multifunctional e-textile fabricated via screen printing of the water-based silver fractal dendrites conductive ink.
View Article and Find Full Text PDFOvercoming the restriction of the energy gap (700-800 cm-1) in Er3+-doped upconversion (UC) materials to achieve high detection accuracy is crucial for practical temperature detection applications. Herein, we design a feasible route based on the different thermal response behaviors of various hosts to enhance the SA value in a double perovskite NaLaMgWO6:Er,Mo system. The maximum SA value is 222.
View Article and Find Full Text PDF