Partial endothelial-to-mesenchymal transition (EndMT) is an intermediate phenotype observed in endothelial cells (ECs) undergoing a transition toward a mesenchymal state to support neovascularization during (patho)physiological angiogenesis. Here, we investigated the occurrence of partial EndMT in ECs under hypoxic/ischemic conditions and identified general transcription factor IIH subunit 4 (GTF2H4) as a positive regulator of this process. In addition, we discovered that GTF2H4 collaborates with its target protein excision repair cross-complementation group 3 (ERCC3) to co-regulate partial EndMT.
View Article and Find Full Text PDFPulmonary artery dissection is a rare and extremely dangerous disease with high mortality rates. It is one of the most serious complications of chronic pulmonary hypertension. It may be related to chronic pulmonary hypertension and pulmonary artery dilatation.
View Article and Find Full Text PDFAutophagy, an intracellular bulk degradation process of proteins and organelles, can be induced by myocardial ischemia in the heart. However, the causative role of autophagy in the survival of human cardiac fibroblasts and the underlying mechanisms are incompletely understood. Oxidative stress can induce autophagy in cultured cells upon hydrogen peroxide (HO) exposure.
View Article and Find Full Text PDFBackground/aims: Vagus nerve stimulation (VNS) suppresses arrhythmic activity and minimizes cardiomyocyte injury. However, how VNS affects angiogenesis/arteriogenesis in infarcted hearts, is poorly understood.
Methods: Myocardial infarction (MI) was achieved by ligation of the left anterior descending coronary artery (LAD) in rats.
In the previous report, Meox1 was found to promote SMCs phenotypic modulation and injury-induced vascular remodeling by regulating the FAK-ERK1/2-autophagy signaling cascade (Wu et al., 2017) [1]. Here, we presented new original data on the involvement of Mesoderm/mesenchyme homeobox gene l (Meox1) in balloon-injury-induced neointima formation of rat.
View Article and Find Full Text PDFAims: To investigate the role of mesoderm/mesenchyme homeobox gene l (Meox1) in vascular smooth muscle cells (SMCs) phenotypic modulation during vascular remodeling.
Methods And Results: By using immunostaining, Western blot, and histological analyses, we found that Meox1 was up-regulated in PDGF-BB-treated SMCs in vitro and balloon injury-induced arterial SMCs in vivo. Meox1 knockdown by shRNA restored the expression of contractile SMCs phenotype markers including smooth muscle α-actin (α-SMA) and calponin.
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)-induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase-2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism.
View Article and Find Full Text PDFThe present study aimed to elucidate the mechanisms by which hydrogen sulfide (H2S) attenuates left ventricular remodeling after myocardial infarction (MI). MI was created in mice by left coronary artery ligation. One group of mice received injections of the H2S donor sodium hydrosulfide (NaHS) immediately before and 1 h after ligation, while the control group received saline alone.
View Article and Find Full Text PDFIn heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment.
View Article and Find Full Text PDFHydrogen sulfide, an endogenous signaling molecule, plays an important role in the physiology and pathophysiology of the cardiovascular system. Using a mouse model of myocardial infarction, we investigated the anti-inflammatory and anti-apoptotic effects of the H2S donor sodium hydrosulfide (NaHS). The results demonstrated that the administration of NaHS improved survival, preserved left ventricular function, limited infarct size, and improved H2S levels in cardiac tissue to attenuate the recruitment of CD11b(+)Gr-1(+) myeloid cells and to regulate the Bax/Bcl-2 pathway.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
December 2013
Background: Emerging evidence shows that the chemokine CXCL16 plays an important role in the pathogenesis of myocardial remodeling and development of heart failure following ischemia/reperfusion (I/R) injury. CXCR6, the receptor for CXCL16, is also critically involved. However, the underlying mechanism remained uncertain, and the aim of this research was to investigate this mechanism in CXCR6 knockout (KO) mice.
View Article and Find Full Text PDFAim Of The Study: Reperfusion following cerebral ischemia leads to excessive production of reactive oxygen species (ROS) and consumption of endogenous antioxidants. Antioxidant enzymes are considered to have beneficial effects against various diseases mediated by ROS. Copper, zinc-superoxide dismutase (SOD1) is one of the major defensive mechanisms by which cells counteract the deleterious effects of ROS after ischemia.
View Article and Find Full Text PDFMyocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia.
View Article and Find Full Text PDF