The aqueous zinc ion battery has emerged as a promising alternative technology for large-scale energy storage due to its low cost, natural abundance, and high safety features. However, the sluggish kinetics stemming from the strong electrostatic interaction of divalent zinc ions in the host crystal structure is one of challenges for highly efficient energy storage. Oxygen vacancies (V), in the present work, lead to a larger tunnel structure along the axis, which improves the reactive kinetics and enhances Zn-ion storage capability in VO (B) cathode.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
Aqueous Zn-ion batteries (ZIBs) are a potential electrochemical energy storage device because of their highly intrinsic safety, low cost, and large capacity. However, it is still in the primary stage because of the limited selection of cathode materials with high rate and long-life cycling stability. In addition, the energy storage mechanisms of ZIBs have not been well established.
View Article and Find Full Text PDF