Due to the increasing crop losses caused by common and newly emerging phytopathogens, there is a pressing need for the development of rapid and reliable methods for phytopathogen detection and analysis. Leveraging advancements in biochemical engineering technologies and nanomaterial sciences, researchers have put considerable efforts on utilizing biofunctionalized magnetic micro- and nanoparticles (MPs) to develop rapid and reliable systems for phytopathogen detection. MPs facilitate the rapid, high-throughput analysis and in-field applications, while the biomacromolecules, which play key roles in the biorecognitions, interactions and signal amplification, determine the specificity, sensitivity, reliability, and portability of pathogen detection systems.
View Article and Find Full Text PDFCaries vaccines have been identified as a good strategy for the prevention of caries through the mechanism of inoculation against Streptococcus mutans, which is the main etiological bacterium causing caries. Protein antigen c (PAc) of S. mutans has been administered as an anticaries vaccine but shows relatively weak immunogenicity to elicit a low-level immune response.
View Article and Find Full Text PDFObjectives: Streptococcus mutans (S. mutans) is the main aetiologic bacterium of dental caries, whose protein antigen (PAc) has been administered as an anti-caries vaccine. In addition, several fusion proteins or PAc combined with adjuvants were used as anti-caries vaccines to improve the relatively weak immunogenicity of PAc.
View Article and Find Full Text PDFis one of the main pathogenic bacteria that causes disease in humans. It is reported that over 18 million cases of disease occurred in the world, and more than 500,000 deaths occur annually worldwide. An effective vaccine is widely regarded as the most reliable way to control and prevent streptococcal infections.
View Article and Find Full Text PDF