Publications by authors named "YouMin Feng"

The in vitro insulin unfolding had been studied using the "equilibrium unfolding" method where protein is unfolded by reducing reagents in the presence of trace amounts of oxidants such as oxidized glutathione. Nine intermediates were captured in the unfolding process, named as P1A, P2A, P3A, P4A, P3B, P4B, P5B, P6B, and P7B, which were all either A chain derivatives or B chain derivatives. No intermediate with inter-A-B chain disulfide was captured.

View Article and Find Full Text PDF

We use the procedure established for 'disulfide stability analysis in redox system' to investigate the unfolding process of porcine insulin precursor (PIP). Six major unfolding intermediates have been captured, in which four contain two disulfides, two contain one disulfide. Based on the characterization and analysis of the intermediates an unfolding pathway has been proposed, by which the native PIP unfolded through in turn 2SS and 1SS intermediates into fully reduced form.

View Article and Find Full Text PDF

Both Insulin and insulin-like growth factor 1 are members of insulin superfamily. They share homologous primary and tertiary structure as well as weakly overlapping biological activity. However, their folding behavior is different: insulin and its recombinant precursor (PIP) fold into one unique tertiary structure, while IGF-1 folds into two disulfides isomers with similar thermodynamic stability.

View Article and Find Full Text PDF

Contributions of the evolutionarily conserved A16Leu and B17Leu to insulin foldability were characterized by evaluating folding properties of single-chain insulin analogs. The results showed A16Leu had much more significant effects on the foldability of insulin than B17Leu.

View Article and Find Full Text PDF

Insulin and related proteins, which have been found not only in mammals, birds, reptiles, amphibians, fish, and cephalochordate, but also in mollusca, insects, and Caenorhabditis elegans, form a large protein family, the insulin superfamily. In comparing their amino acid sequences, a common sequence characteristic, the insulin structural motif, is found in all members of the superfamily. The structural motif is deduced to be the sequence basis of the identical disulfide linkages and similar three-dimensional structures of the superfamily.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the in vitro refolding process of double-chain insulin, building on previous work with single-chain insulin.
  • Six major folding intermediates (P1A, P2B, P3A, P4B, P5B, P6B) were identified, indicating they are part of the folding pathway.
  • The proposed two-stage folding pathway involves: (1) initial formation of A and B chain intermediates, followed by (2) the formation of transients through thiol/disulfide reactions, leading to the final native structure of insulin.
View Article and Find Full Text PDF

Although insulin and insulin-like growth factor-1 (IGF-1) belong to the insulin superfamily and share highly homologous sequences, similar tertiary structure, and a common ancestor molecule, amphioxus insulin-like peptide, they have different folding behaviors: IGF-1 folds into two thermodynamically stable tertiary structures (native and swap forms), while insulin folds into one unique stable structure. To further understand which part of the sequence determines their different folding behavior, based on previous reports from the laboratory, two peptide models, [B9A][1-4]porcine insulin precursor (PIP) and [B10E][1-4]PIP, were constructed. The plasmids encoding the peptides were transformed into yeast cells for expression of the peptides; the results showed that the former peptide was expressed as single component, while the latter was expressed as a mixture of two components (isomer 1 and isomer 2).

View Article and Find Full Text PDF

Insulin is a double-chain (designated A and B chain respectively) protein hormone containing three disulfides, while insulin is synthesized in vivo as a single-chain precursor and folded well before being released from B-cells. Although the structure and function of insulin have been well characterized, the progress in oxidative folding pathway studies of insulin has been very slow, mainly due to the difficulties brought about by its disulfide-linked double-chain structure. To overcome these difficulties, we recently studied the in vitro oxidative folding process of two single-chain insulins: porcine insulin precursor (PIP) and human proinsulin (HPI).

View Article and Find Full Text PDF

B8Gly is absolutely conserved in insulins during evolution. Moreover, its corresponding position is always occupied by a Gly residue in other members of insulin superfamily. Previous work showed that Ala replacement of B8Gly significantly decreased both the activity and the foldability of insulin.

View Article and Find Full Text PDF

Insulin contains three disulfide bonds, one intrachain bond, A6-A11, and two interchain bonds, A7-B7 and A20-B19. Site-directed mutagenesis results (the two cysteine residues of disulfide A7-B7 were replaced by serine) showed that disulfide A7-B7 is crucial to both the structure and activity of insulin. However, chemical modification results showed that the insulin analogs still retained relatively high biological activity when A7Cys and B7Cys were modified by chemical groups with a negative charge.

View Article and Find Full Text PDF

Insulin and insulin-like growth factor 1 (IGF-1) share a homologous sequence, a similar three-dimensional structure and weakly overlapping biological activity, but IGF-1 folds into two thermodynamically stable disulfide isomers, while insulin folds into one unique stable tertiary structure. This is a very interesting phenomenon in which one amino acid sequence encodes two three-dimensional structures, and its molecular mechanism has remained unclear for a long time. In this study, the crystal structure of mini-IGF-1(2), a disulfide isomer of an artificial analog of IGF-1, was solved by the SAD/SIRAS method using our in-house X-ray source.

View Article and Find Full Text PDF

Amphioxus insulin-like peptide (AILP) belongs to the insulin superfamily and is proposed as the common ancestor of insulin and insulin-like growth factor 1. Herein, the studies on oxidative refolding and reductive unfolding of AILP are reported. During the refolding process, four major intermediates, P1, P2, P3, and P4, were captured, which were almost identical to those intermediates, U1, U2, U3, and U4, captured during the AILP unfolding process.

View Article and Find Full Text PDF

Although insulin and insulin-like growth factor-1 (IGF-1) belong to one family, insulin folds into one thermodynamically stable structure, while IGF-1-folds into two thermodynamically stable structures (native and swap forms). We have demonstrated previously that the bifurcating folding behavior of IGF-1 is mainly controlled by its B-domain. To further elucidate which parts of the sequences determine their different folding behavior, by exchanging the N-terminal sequences of mini-IGF-1 and recombinant porcine insulin precursor (PIP), we prepared four peptide models: [1-9]PIP, [1-10]mini-IGF-1, [1-4]PIP, and [1-5]mini-IGF-1 by means of protein engineering, and their disulfide rearrangement, V8 digestion, circular dichroic spectra, disulfide stability, and in vitro refolding were investigated.

View Article and Find Full Text PDF

Natural polypeptide chain usually can spontaneously fold into tightly compact native structure. This capability is the so-called foldability. However, how the foldability is encoded in the polypeptide chain is still poorly understood.

View Article and Find Full Text PDF

We have investigated the in vitro refolding process of human proinsulin (HPI) and an artificial mini-C derivative of HPI (porcine insulin precursor, PIP), and found that they have significantly different disulfide-formation pathways. HPI and PIP differ in their amino acid sequences due to the presence of the C-peptide linker found in HPI, therefore suggesting that the C-peptide linker may be responsible for the observed difference in folding behaviour. However, the manner in which the C-peptide contributes to this difference is still unknown.

View Article and Find Full Text PDF

The single-chain insulin (PIP) can spontaneously fold into native structure through preferred kinetic intermediates. During refolding, pairing of the first disulfide A20-B19 is highly specific, whereas pairing of the second disulfide is likely random because two two-disulfide intermediates have been trapped. To get more details of pairing property of the second disulfide, four model peptides of possible folding intermediates with two disulfides were prepared by protein engineering, and their properties were analyzed.

View Article and Find Full Text PDF

Blood glucose lowering assay proved that [B16Ala]insulin and [B26Ala]insulin exhibit potency of acute blood glucose lowering in normal pigs, which demonstrates that they are fast-acting insulin. Single-chain precursor of [B16Ala]insulin and [B26Ala]insulin is [B16Ala]PIP and [B26Ala]PIP, respectively, which are suitable for gene expression. Secretory expression level of the precursors in methylotrophic yeast Pichia pastoris was quite high, 650 mg/L and 130 mg/L, respectively.

View Article and Find Full Text PDF

Insulin and insulin-like growth factor 1 (IGF-1) share high sequence homology, but their folding behaviors are significantly different: insulin folds into one unique thermodynamically controlled structure, while IGF-1 folds into two thermodynamically controlled disulfide isomers. However, the origin of their different folding behaviors is still elusive. The amphioxus insulin-like peptide (ILP) is thought to be the common ancestor of insulin and IGF-1.

View Article and Find Full Text PDF

B8Gly is absolutely conserved in insulin from different species, and in other members of the insulin superfamily the corresponding position is always occupied by a Gly residue. However, the reasons for its conservation are still unclear; probably many factors contribute to this phenomenon. In our previous work, B8Gly was replaced by an Ala residue, which suggested that biological activity is one of the factors contributing to its conservation.

View Article and Find Full Text PDF

Insulin folds into a unique three-dimensional structure stabilized by three disulfide bonds. Our previous work suggested that during in vitro refolding of a recombinant single-chain insulin (PIP) there exists a critical folding intermediate containing the single disulfide A20-B19. However, the intermediate cannot be trapped during refolding because once this disulfide is formed, the remaining folding process is very quick.

View Article and Find Full Text PDF

Human insulin is a double-chain peptide that is synthesized in vivo as a single-chain human proinsulin (HPI). We have investigated the disulfide-forming pathway of a single-chain porcine insulin precursor (PIP). Here we further studied the folding pathway of HPI in vitro.

View Article and Find Full Text PDF

By site-directed mutagenesis, six insulin residues related to the insulin-receptor interaction were grafted, partially or fully, onto the corresponding position of a recombinant amphioxus insulin-like peptide (ILP) that contained the A- and B-domains of the deduced amphioxus ILP. After fermentation, purification, and enzymatic cleavage, six insulin-like double-chain ILP analogues were obtained: [A2Ile]ILP, [B12Val, B16Tyr]ILP, [B25Phe]ILP, [A2Ile, B12Val, B16Tyr, B25Phe]ILP (four-mutated ILP), [A2Ile, B12Val, B16Tyr, B24Phe, B25Phe]ILP (five-mutated ILP), and [A2Ile, B12Val, B16Tyr, B24Phe, B25Phe, B26Tyr]ILP (six-mutated ILP). Circular dichroism analysis showed that such replacement did not significantly affect their secondary and tertiary structure compared with that of the wild-type ILP.

View Article and Find Full Text PDF

Insulin and insulin-like growth factor 1 (IGF-1) share homologous sequence, similar three-dimensional structure, and weakly overlapping biological activity, but different folding information is stored in their homologous sequences: the sequence of insulin encodes one unique thermodynamically stable three-dimensional structure while that of IGF-1 encodes two disulfide isomers with different three-dimensional structure but similar thermodynamic stability. Their different folding behavior probably resulted from the different energetic state of the intra A-chain/domain disulfide: the intra A-chain disulfide of insulin is a stable bond while that of IGF-1 is a strained bond with high energy. To find out the sequence determinant of the different energetic state of their intra A-chain/domain disulfide, the following experiments were carried out.

View Article and Find Full Text PDF

The growth promoting effects of seven animal serum transferrins from mammalian, aves, reptilia, amphibian and osteichthyes on mouse mammary tumor cell line GR2H6 in serum-free medium were compared by MTT assays. The results indicated that the mitogenic activities of the transferrins from different species were different, and this discrepancy was approximately parallel to their binding capacities with transferrin receptors on human placenta and GR2H6 cells.

View Article and Find Full Text PDF

By growing the mouse mammary tumor-derived cell line GR2H6 in 96-well plates, we have developed an in vitro bioassay for the growth promoting activities of insulin. This bioassay system offers several advantages over currently used alternatives, such as higher sensitivity, better reproducibility and the processing of many samples simultaneously. Using this method, the mitogenic activities of insulin and its analogues were studied.

View Article and Find Full Text PDF