Diabetes mellitus is a metabolic disorder that affects millions of individuals worldwide. Continuous glucose monitoring (CGM) offers a prevalent method for continuously monitoring interstitial glucose levels instead of traditional self-monitoring of blood glucose (BG), eliminating the need for finger pricking and providing only discrete data. However, challenges in accuracy persist in CGM, including substantial noise interference and tissue fluid erosion, as well as the pH fluctuations in the localized ISF microenvironment during acute inflammation periods.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is characterized by social interaction deficits and repetitive behaviors. Recent research has linked that gut dysbiosis may contribute to ASD-like behaviors. However, the exact developmental time point at which gut microbiota alterations affect brain function and behavior in patients with ASD remains unclear.
View Article and Find Full Text PDFWith prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.
View Article and Find Full Text PDFBackground: Electroencephalography (EEG) and electrocorticography (ECoG) recordings have been used to decode finger movements by analyzing brain activity. Traditional methods focused on single bandpass power changes for movement decoding, utilizing machine learning models requiring manual feature extraction.
New Method: This study introduces a 3D convolutional neural network (3D-CNN) model to decode finger movements using ECoG data.
Objective: This study aims to overcome challenges in lumbar spine imaging, particularly lumbar spinal stenosis, by developing an automated segmentation model using advanced techniques. Traditional manual measurement and lesion detection methods are limited by subjectivity and inefficiency. The objective is to create an accurate and automated segmentation model that identifies anatomical structures in lumbar spine magnetic resonance imaging scans.
View Article and Find Full Text PDFAtopic dermatitis (AD) is a chronic inflammatory skin disease. However, few studies have investigated brain changes associated with chronic inflammation. We hypothesized that chronic inflammation might be related to brain structural alterations in patients with AD.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors and dysfunctions in many organs, including the brain. Aside from the brain malformations, many individuals with TSC exhibit neuropsychiatric symptoms. Among these symptoms, autism spectrum disorder (ASD) is one of the most common co-morbidities, affecting up to 60% of the population.
View Article and Find Full Text PDFNeurobiol Stress
September 2023
Major depressive disorder (MDD), a common psychiatric condition, adversely affects patients' moods and quality of life. Despite the development of various treatments, many patients with MDD remain vulnerable and inadequately controlled. Since anhedonia is a feature of depression and there is evidence of leading to metabolic disorder, deep brain stimulation (DBS) to the nucleus accumbens (NAc) might be promising in modulating the dopaminergic pathway.
View Article and Find Full Text PDFComplete reaching movements involve target sensing, motor planning, and arm movement execution, and this process requires the integration and communication of various brain regions. Previously, reaching movements have been decoded successfully from the motor cortex (M1) and applied to prosthetic control. However, most studies attempted to decode neural activities from a single brain region, resulting in reduced decoding accuracy during visually guided reaching motions.
View Article and Find Full Text PDFFine particulate matter (PM) is thought to exacerbate Parkinson's disease (PD) in the elderly, and early detection of PD progression may prevent further irreversible damage. Therefore, we used diffusion tensor imaging (DTI) for probing microstructural changes after late-life chronic traffic-related PM exposure. Herein, 1.
View Article and Find Full Text PDFBackground: Cerebral vascular protection is critical for stroke treatment. Adenosine modulates vascular flow and exhibits neuroprotective effects, in which brain extracellular concentration of adenosine is dramatically increased during ischemic events and ischemia-reperfusion. Since the equilibrative nucleoside transporter-2 (Ent2) is important in regulating brain adenosine homeostasis, the present study aimed to investigate the role of Ent2 in mice with cerebral ischemia-reperfusion.
View Article and Find Full Text PDFWearable cuffless photoplethysmographic blood pressure monitors have garnered widespread attention in recent years; however, the long-term performance values of these devices are questionable. Most cuffless blood pressure monitors require initial baseline calibration and regular recalibrations with a cuffed blood pressure monitor to ensure accurate blood pressure estimation, and their estimation accuracy may vary over time if left uncalibrated. Therefore, this study assessed the accuracy and long-term performance of an upper-arm, cuffless photoplethysmographic blood pressure monitor according to the ISO 81060-2 standard.
View Article and Find Full Text PDFAir pollution has been linked to respiratory diseases, and urban air pollution can be attributed to a number of emission sources. The emitted particles and gases are the primary components of air pollution that enter the lungs during respiration. Particulate matter with an aerodynamic diameter of ≤ 2.
View Article and Find Full Text PDFIncreasing requirements for neural implantation are helping to expand our understanding of nervous systems and generate new developmental approaches. It is thanks to advanced semiconductor technologies that we can achieve the high-density complementary metal-oxide-semiconductor electrode array for the improvement of the quantity and quality of neural recordings. Although the microfabricated neural implantable device holds much promise in the biosensing field, there are some significant technological challenges.
View Article and Find Full Text PDFOwing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method for mediating neural activity and neural function, the relationship between DBS-evoked neural Ca change and DBS-evoked neural electrophysiology remains unknown.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) contributes to higher mortality worldwide. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have immunomodulatory and regenerative potential. However, the effects of hUC-MSCs as an ARDS treatment remain unclear.
View Article and Find Full Text PDFWe investigated the effects of antibiotics, drugs, and metals on lung and intestinal microbiomes after sub-chronic exposure of low-level air pollution in ageing rats. Male 1.5-year-old Fischer 344 ageing rats were exposed to low-level traffic-related air pollution via whole-body exposure system for 3 months with/without high-efficiency particulate air (HEPA) filtration (gaseous vs.
View Article and Find Full Text PDFTraumatic brain injury causes inflammation and glial scarring that impede brain tissue repair, so stimulating angiogenesis and recovery of brain function remain challenging. Here we present an adaptable conductive microporous hydrogel consisting of gold nanoyarn balls-coated injectable building blocks possessing interconnected pores to improve angiogenesis and recovery of brain function in traumatic brain injury. We show that following minimally invasive implantation, the adaptable hydrogel is able to fill defects with complex shapes and regulate the traumatic brain injury environment in a mouse model.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality in chronic lung disease patients throughout the world. Mesenchymal stem cells (MSCs) have been shown to regulate immunomodulatory, anti-inflammatory, and regenerative responses. However, the effects of human-umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) on the lung pathophysiology of COPD remain unclear.
View Article and Find Full Text PDFHippocampal pyramidal cells and interneurons play a key role in spatial navigation. In goal-directed behavior associated with rewards, the spatial firing pattern of pyramidal cells is modulated by the animal's moving direction toward a reward, with a dependence on auditory, olfactory, and somatosensory stimuli for head orientation. Additionally, interneurons in the CA1 region of the hippocampus monosynaptically connected to CA1 pyramidal cells are modulated by a complex set of interacting brain regions related to reward and recall.
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary disease (COPD) is a major cause of chronic mortality. The objective of this study was to investigate the therapeutic potential of a novel potent histone deacetylase (HDAC) inhibitor MPT0E028 on emphysema.
Materials And Methods: A mouse model of porcine pancreatic elastase (PPE)-induced emphysema was orally administered 0, 25, or 50 mg/kg body weight (BW) of the MPT0E028 five times/week for 3 weeks.
An exoskeleton, a wearable device, was designed based on the user's physical and cognitive interactions. The control of the exoskeleton uses biomedical signals reflecting the user intention as input, and its algorithm is calculated as an output to make the movement smooth. However, the process of transforming the input of biomedical signals, such as electromyography (EMG), into the output of adjusting the torque and angle of the exoskeleton is limited by a finite time lag and precision of trajectory prediction, which result in a mismatch between the subject and exoskeleton.
View Article and Find Full Text PDFObjective: In patients with fibromyalgia (FM), the brain shows altered structure and functional connectivity, but the mechanisms underlying these changes remain unclear. This study investigated the associated changes in brain microstructures and neuroinflammation of patients with FM.
Methods: We recruited 14 patients with FM and 14 healthy controls (HCs).