Publications by authors named "You-Yi Zhuang"

Background: Aberrant proliferation and inflammation of fibroblast-like synoviocytes (FLSs) significantly contribute to the pathogenesis of rheumatoid arthritis (RA). Deficiency of hydrogen sulfide (HS) is a driving force for the development of RA, and the short half-life of the HS-releasing donor sodium hydrosulfide (NaHS) limits its clinical application in RA therapy. Designing a targeted delivery system with slow-release properties for FLSs could offer novel strategies for treating RA.

View Article and Find Full Text PDF

Diffusion-based generative models represent a forefront direction in generative artificial intelligence (AI) research today. Recent studies in physics have suggested that the renormalization group (RG) can be conceptualized as a diffusion process. This insight motivates us to develop a diffusion-based generative model by reversing the momentum-space RG flow.

View Article and Find Full Text PDF

The recent discovery of high-temperature superconductivity in La_{3}Ni_{2}O_{7} offers a fresh platform for exploring unconventional pairing mechanisms. Starting with the basic argument that the electrons in d_{z^{2}} orbitals nearly form local moments, we examine the effect of the Hubbard interaction U on the binding strength of Cooper pairs based on a single-orbital bilayer model with intralayer hopping t_{∥} and interlayer superexchange J_{⊥}. By extensive density matrix renormalization group calculations, we observe a remarkable enhancement in binding energy as much as 10-20 times larger with U/t_{∥} increasing from 0 to 12 at J_{⊥}/t_{∥}∼1.

View Article and Find Full Text PDF

The "symmetric mass generation" (SMG) quantum phase transition discovered in recent years has attracted great interest from both condensed matter and high energy theory communities. Here, interacting Dirac fermions acquire a gap without condensing any fermion bilinear mass term or any concomitant spontaneous symmetry breaking. It is hence beyond the conventional Gross-Neveu-Yukawa-Higgs paradigm.

View Article and Find Full Text PDF

Lattice regularization of chiral fermions has been a long-standing problem in physics. In this Letter, we present the density matrix renormalization group simulation of the 3-4-5-0 model of (1+1)D chiral fermions with an anomaly-free chiral U(1) symmetry, which contains two left-moving and two right-moving fermions carrying U(1) charges 3,4 and 5,0, respectively. Following the Wang-Wen chiral fermion model, we realize the chiral fermions and their mirror partners on the opposite boundaries of a thin strip of (2+1)D lattice model of multilayer Chern insulator, whose finite width implies the quantum system is effectively (1+1)D.

View Article and Find Full Text PDF
Article Synopsis
  • The interaction between topology, superconductivity, and magnetism in materials like FeTeSe could lead to unique quantum behaviors.
  • The study utilized nitrogen vacancy centers in diamonds to investigate the magnetic properties of FeTeSe and found a strong link between its superconductivity and ferromagnetism.
  • This research not only highlights the importance of FeTeSe for understanding quantum materials but also suggests potential uses in advanced quantum information technologies.
View Article and Find Full Text PDF

The quantum neural network is one of the promising applications for near-term noisy intermediate-scale quantum computers. A quantum neural network distills the information from the input wave function into the output qubits. In this Letter, we show that this process can also be viewed from the opposite direction: the quantum information in the output qubits is scrambled into the input.

View Article and Find Full Text PDF

Can physical concepts and laws emerge in a neural network as it learns to predict the observation data of physical systems? As a benchmark and a proof-of-principle study of this possibility, here we show an introspective learning architecture that can automatically develop the concept of the quantum wave function and discover the Schrödinger equation from simulated experimental data of the potential-to-density mappings of a quantum particle. This introspective learning architecture contains a machine translator to perform the potential to density mapping, and a knowledge distiller auto-encoder to extract the essential information and its update law from the hidden states of the translator, which turns out to be the quantum wave function and the Schrödinger equation. We envision that our introspective learning architecture can enable machine learning to discover new physics in the future.

View Article and Find Full Text PDF

Noether's theorem is one of the fundamental laws of physics, relating continuous symmetries and conserved currents. Here we explore the role of Noether's theorem at the deconfined quantum critical point (DQCP), which is a quantum phase transition beyond the Landau-Ginzburg-Wilson paradigm. It was expected that a larger continuous symmetry could emerge at the DQCP, which, if true, should lead to conserved current at low energy.

View Article and Find Full Text PDF

Bosonic symmetry protected topological (BSPT) states, the bosonic analogue of topological insulators, have attracted enormous theoretical interest in the last few years. Although BSPT states have been classified by various approaches, there is so far no successful experimental realization of any BSPT state in two or higher dimensions. In this paper, we propose that a two-dimensional BSPT state with U(1)×U(1) symmetry can be realized in bilayer graphene in a magnetic field.

View Article and Find Full Text PDF

We investigate the generic features of the low energy dynamical spin structure factor of the Kitaev honeycomb quantum spin liquid perturbed away from its exact soluble limit by generic symmetry-allowed exchange couplings. We find that the spin gap persists in the Kitaev-Heisenberg model, but generally vanishes provided more generic symmetry-allowed interactions exist. We formulate the generic expansion of the spin operator in terms of fractionalized Majorana fermion operators according to the symmetry enriched topological order of the Kitaev spin liquid, described by its projective symmetry group.

View Article and Find Full Text PDF

We demonstrate the following conclusion: If |Ψ⟩ is a one-dimensional (1D) or two-dimensional (2D) nontrivial short-range entangled state and |Ω⟩ is a trivial disordered state defined on the same Hilbert space, then the following quantity (so-called "strange correlator") C(r,r('))=⟨Ω|ϕ(r)ϕ(r('))|Ψ⟩/⟨Ω|Ψ⟩ either saturates to a constant or decays as a power law in the limit |r-r(')|→+∞, even though both |Ω⟩ and |Ψ⟩ are quantum disordered states with short-range correlation; ϕ(r) is some local operator in the Hilbert space. This result is obtained based on both field theory analysis and an explicit computation of C(r,r(')) for four different examples: 1D Haldane phase of spin-1 chain, 2D quantum spin Hall insulator with a strong Rashba spin-orbit coupling, 2D spin-2 Affleck-Kennedy-Lieb-Tasaki state on the square lattice, and the 2D bosonic symmetry-protected topological phase with Z(2) symmetry. This result can be used as a diagnosis for short-range entangled states in 1D and 2D.

View Article and Find Full Text PDF

In this Letter we consider spinless bosons in a kagome lattice with nearest-neighbor hopping and on-site interaction, and the sign of hopping is inverted by insetting a π flux in each triangle of the kagome lattice so that the lowest single particle band is perfectly flat. We show that in the high-density limit, despite the infinite degeneracy of the single particle ground states, interaction will select out the Bloch state at the K point of the Brillouin zone for boson condensation at the lowest temperature. As the temperature increases, the single-boson superfluid order can be easily destroyed, while an exotic triple-boson paired superfluid order will remain.

View Article and Find Full Text PDF

We propose a theoretical description of the phase diagram and physical properties in A(2)Fe(4)Se(5)-type (A=K, Tl) compounds based on a coexistent local moment and itinerant electron picture. Using neutron scattering and angle-resolved photoemission spectroscopy measurements to fix the general structure of the local moment and itinerant Fermi pockets, we find a superconducting phase with s-wave pairing at the M pockets and an incipient sign-change s wave near the Γ point, which is adjacent to the insulating phases. The uniform susceptibility and resistivity are found to be consistent with the experiment.

View Article and Find Full Text PDF