While there have been notable advancements in Si-based optical integration, achieving compact and efficient continuous-wave (CW) III-V semiconductor nanolasers on Si at room temperature remains a substantial challenge. This study presents an innovative approach: the on-demand minimal-gain-printed Si nanolaser. By using a carefully designed minimal III-V optical gain structure and a precise on-demand gain-printing technique, we achieve lasing operation with superior spectral stability under pulsed conditions and observe a strong signature of CW operation at room temperature.
View Article and Find Full Text PDFThe commercialization of 3D heterogeneous integration through hybrid bonding has accelerated, and accordingly, Cu-polymer bonding has gained significant attention as a means of overcoming the limitations of conventional Cu-SiO hybrid bonding, offering high compatibility with other fabrication processes. Polymers offer robust bonding strength and a low dielectric constant, enabling high-speed signal transmission with high reliability, but suffer from low thermomechanical stability. Thermomechanical stability of polymers was not achieved previously because of thermal degradation and unstable anchoring.
View Article and Find Full Text PDFCoupled optical cavities are an attractive on-chip optical platform for realizing quantum mechanical concepts in electrodynamics and further developing non-Hermitian photonics. In such systems, an intercavity interaction is often considered as a key parameter to understand the system's behaviors but its estimation/calculation is typically limited for some simplified systems owing to extended complexities. For example, multi-coupled photonic crystal (PhC) nanocavities exhibiting strong resonances with a large free spectral range can serve as an excellent test-bed to study non-Hermitian optical properties when spatially non-uniform gain is introduced.
View Article and Find Full Text PDFOn-demand NW light sources in a photonic integrated circuit (PIC) have faced several practical challenges. Here, we report on an all-graphene-contact, electrically pumped, on-demand transferrable NW source that is fabricated by implementing an all-graphene-contact approach in combination with a highly accurate microtransfer printing technique. A vertically p-i-n-doped top-down-fabricated semiconductor NW with optical gain structures is electrically pumped through the patterned multilayered graphene contacts.
View Article and Find Full Text PDFWe present an integration of a single Ag nanowire (NW) with a graphene photodetector and demonstrate an efficient and compact detection of long-range surface plasmon polaritons (SPPs). Atomically thin graphene provides an ideal platform to detect the evanescent electric field of SPPs extremely bound at the interface of the Ag NW and glass substrate. Scanning photocurrent microscopy directly visualizes a polarization-dependent excitation and detects the SPPs.
View Article and Find Full Text PDFSince the successful exfoliation of graphene, various methodologies have been developed to identify the number of layers of exfoliated graphene. The optical contrast, Raman G-peak intensity, and 2D-peak line-shape are currently widely used as the first level of inspection for graphene samples. Although the combination analysis of G- and 2D-peaks is powerful for exfoliated graphene samples, its use is limited in chemical vapor deposition (CVD)-grown graphene because CVD-grown graphene consists of various domains with randomly rotated crystallographic axes between layers, which makes the G- and 2D-peaks analysis difficult for use in number identification.
View Article and Find Full Text PDFIn this review, we introduce novel plasmonic and metamaterial devices based on one-dimensional subwavelength nanostructures with cylindrical symmetry. Individual single devices with semiconductor/metal core/shell or dielectric/metal core/multi-shell structures experience strong light-matter interaction and yield unique optical properties with a variety of functions, e.g.
View Article and Find Full Text PDFWe report the enhancement of light absorption in Si nanowire photovoltaic devices with one-dimensional dielectric or metallic gratings that are fabricated by a damage-free, precisely aligning, polymer-assisted transfer method. Incorporation of a SiN grating with a Si nanowire effectively enhances the photocurrents for transverse-electric polarized light. The wavelength at which a maximum photocurrent is generated is readily tuned by adjusting the grating pitch.
View Article and Find Full Text PDFIn this study, we proposed morphology-modulated Si nanowires (NWs) with a hexagonal cross-section and numerically investigated their resonant optical absorption and scattering properties. The calculated absorption and scattering efficiency spectra of the NWs exhibited optical resonances that could be controlled by tuning the aspect ratio (AR) of the NW cross-sectional shapes. The spectra also revealed interesting spectral behaviors including resonant peak shifts in the absorption spectrum and asymmetric line shapes in the scattering spectrum.
View Article and Find Full Text PDFAlthough counter-intuitive features have been observed in non-Hermitian optical systems based on micrometre-sized cavities, the achievement of a simplified but unambiguous approach to enable the efficient access of exceptional points (EPs) and the phase transition to desired lasing modes remains a challenge, particularly in wavelength-scale coupled cavities. Here, we demonstrate coupled photonic-crystal (PhC) nanolasers with asymmetric optical gains, and observe the phase transition of lasing modes at EPs through tuning of the area of graphene cover on one PhC cavity and systematic scanning photoluminescence measurements. As the gain contrast between the two identical PhC cavities exceeds the intercavity coupling, the phase transition occurs from the bonding/anti-bonding lasing modes to the single-amplifying lasing mode, which is confirmed by the experimental measurement of the mode images and the theoretical modelling of coupled cavities with asymmetric gains.
View Article and Find Full Text PDFHigh-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs.
View Article and Find Full Text PDFInterest in mechanical compliance has been motivated by the development of flexible electronics and mechanosensors. In particular, studies and characterization of structural deformation at the fundamental scale can offer opportunities to improve the device sensitivity and spatiotemporal response; however, the development of precise measurement tools with the appropriate resolution remains a challenge. Here we report a flexible and stretchable photonic crystal nanolaser whose spectral and modal behaviours are sensitive to nanoscale structural alterations.
View Article and Find Full Text PDFSubwavelength-scale metal and dielectric nanostructures have served as important building blocks for electromagnetic metamaterials, providing unprecedented opportunities for manipulating the optical response of the matter. Recently, hyperbolic metamaterials have been drawing particular interest because of their unusual optical properties and functionalities, such as negative refraction and hyperlensing of light. Here, as a promising application of a hyperbolic metamaterial at visible frequency, we propose an invisible nanotube that consists of metal and dielectric alternating thin layers.
View Article and Find Full Text PDFIntegration of compound semiconductors with silicon (Si) has been a long-standing goal for the semiconductor industry, as direct band gap compound semiconductors offer, for example, attractive photonic properties not possible with Si devices. However, mismatches in lattice constant, thermal expansion coefficient, and polarity between Si and compound semiconductors render growth of epitaxial heterostructures challenging. Nanowires (NWs) are a promising platform for the integration of Si and compound semiconductors since their limited surface area can alleviate such material mismatch issues.
View Article and Find Full Text PDFThe Plateau-Rayleigh instability was first proposed in the mid-1800s to describe how a column of water breaks apart into droplets to lower its surface tension. This instability was later generalized to account for the constant volume rearrangement of various one-dimensional liquid and solid materials. Here, we report a growth phenomenon that is unique to one-dimensional materials and exploits the underlying physics of the Plateau-Rayleigh instability.
View Article and Find Full Text PDFWet-chemical synthesis is a promising alternative to the conventional vapour-phase method owing to its advantages in commercial-scale production at low cost. Studies on nanocrystallization in solution have suggested that growth rate is commonly affected by the size and density of surrounding crystals. However, systematic investigation on the mutual interaction among neighbouring crystals is still lacking.
View Article and Find Full Text PDFIn this review paper, we introduce the unique optical properties of high-quality, fully three-dimensional, subwavelength-scale plasmonic cavities. Surface-plasmon-polaritons excited at dielectric-metal interfaces are strongly confined in such cavities. The field profiles of plasmonic modes, their temperature-dependent quality factors, and subwavelength mode volumes are calculated and analyzed systematically using three-dimensional finite-difference time-domain simulations.
View Article and Find Full Text PDFWe demonstrate the efficient integration of an electrically driven nanowire (NW) light source with a double-strip plasmonic waveguide. A top-down-fabricated GaAs NW light-emitting diode (LED) is placed between two straight gold strip waveguides with the gap distance decreasing to 30 nm at the end of the waveguide and operated by current injection through the p-contact electrode acting as a plasmonic waveguide. Measurements of polarization-resolved images and spectra show that the light emission from the NW LED was coupled to a plasmonic waveguide mode, propagated through the waveguide, and was focused onto a subwavelength-sized spot of surface plasmon polaritons at the tapered end of the waveguide.
View Article and Find Full Text PDFWe propose an ultrasmall plasmonic cavity consisting of a high-index/low-index dielectric nanorod covered with silver. Full three-dimensional subwavelength confinement of the surface-plasmon polaritons was achieved at the high-index dielectric-silver interface without propagating to the low-index dielectric-silver interface. The numerical simulations showed that the plasmonic mode excited in this cavity has a deep subwavelength mode volume of 0.
View Article and Find Full Text PDFIn this study, the modal characteristics of a single-GaN nanowire cavity with a triangular cross section surrounded by air or located on a silicon dioxide substrate have been analyzed. Two transverse resonant modes, transverse electric-like and transverse magnetic-like modes, are dominantly excited for nanowire cavities that have a small cross-sectional size of <300 nm and length of 10 microm. Using the three-dimensional finite-difference time-domain simulation method, quality factors, confinement factors, single-mode conditions, and far-field emission patterns are investigated for a nanowire cavity as a function of one length of the triangular cross section.
View Article and Find Full Text PDFWe demonstrate new types of dielectric-band photonic crystal lasers in a two-dimensional modified single-cell cavity with enlarged air holes. Finite-difference time-domain simulations performed in real and Fourier spaces show that the dielectric-band cavity modes originating from the first band edge point in the dielectric band have mode patterns that are distinguishable from conventional air-band cavity modes. In our experiment, the observed multimode lasing peaks are identified as the hexapole and the monopole dielectric-band cavity modes through the spectral positions and mode images.
View Article and Find Full Text PDF