Aims/hypothesis: Resistin was originally identified as an adipocyte-derived factor upregulated during obesity and as a contributor to obesity-associated insulin resistance. Clinically, resistin has also been implicated in cardiovascular disease in a number of different patient populations. Our aim was to simultaneously address these phenomena.
View Article and Find Full Text PDFAdiponectin overexpression in mice increases insulin sensitivity independent of adiposity. Here, we combined stable isotope infusion and in vivo measurements of lipid flux with transcriptomic analysis to characterize fatty acid metabolism in transgenic mice that overexpress adiponectin via the aP2-promoter (ADNTg). Compared with controls, fasted ADNTg mice demonstrated a 31% reduction in plasma free fatty acid concentrations (P = 0.
View Article and Find Full Text PDFCirculating leptin and insulin convey information regarding energy stores to the central nervous system, particularly the hypothalamus. Hypothalamic pro-opiomelanocortin (POMC) neurons regulate energy balance and glucose homeostasis and express leptin and insulin receptors. However, the physiological significance of concomitant leptin and insulin action on POMC neurons remains to be established.
View Article and Find Full Text PDFRecent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons.
View Article and Find Full Text PDFObjective: Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance.
View Article and Find Full Text PDFObjective: The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling; consequently, mice deficient in PTP1B are hypersensitive to insulin. Because PTP1B(-/-) mice have diminished fat stores, the extent to which PTP1B directly regulates glucose homeostasis is unclear. Previously, we showed that brain-specific PTP1B(-/-) mice are protected against high-fat diet-induced obesity and glucose intolerance, whereas muscle-specific PTP1B(-/-) mice have increased insulin sensitivity independent of changes in adiposity.
View Article and Find Full Text PDFInflammation provokes significant abnormalities in host metabolism that result from the systemic release of cytokines. An early response of the host is hyperglycemia and resistance to the action of insulin, which progresses over time to increased glucose uptake in peripheral tissue. Although the cytokine TNF-alpha has been shown to exert certain catabolic effects, recent studies suggest that the metabolic actions of TNF-alpha occur by the downstream regulation of additional mediators, such as macrophage migration inhibitory factor (MIF).
View Article and Find Full Text PDFAs a new mouse model of obesity-induced diabetes generated by combining quantitative trait loci from New Zealand Obese (NZO/HlLt) and Nonobese Nondiabetic (NON/LtJ) mice, NONcNZO10/LtJ (RCS10) male mice developed type 2 diabetes characterized by maturity onset obesity, hyperglycemia, and insulin resistance. To metabolically profile the progression to diabetes in preobese and obese states, a 2-h hyperinsulinemic euglycemic clamp was performed and organ-specific changes in insulin action were assessed in awake RCS10 and NON/LtJ (control) males at 8 and 13 wk of age. Prior to development of obesity and attendant increases in hepatic lipid content, 8-wk-old RCS10 mice developed insulin resistance in liver and skeletal muscle due to significant decreases in insulin-stimulated glucose uptake and GLUT4 expression in muscle.
View Article and Find Full Text PDFObesity is a major factor central to the development of insulin resistance and type 2 diabetes. The identification and characterization of genes involved in regulation of adiposity, insulin sensitivity, and glucose uptake are key to the design and development of new drug therapies for this disease. In this study, we show that the polarity kinase Par-1b/MARK2 is required for regulating glucose metabolism in vivo.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
September 2006
Mice with liver-specific overexpression of dominant negative phosphorylation-defective S503A-CEACAM1 mutant (L-SACC1) developed chronic hyperinsulinemia resulting from blunted hepatic clearance of insulin, visceral obesity, and glucose intolerance. To determine the underlying mechanism of altered glucose homeostasis, a 2-h hyperinsulinemic euglycemic clamp was performed, and tissue-specific glucose and lipid metabolism was assessed in awake L-SACC1 and wild-type mice. Inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) caused insulin resistance in liver that was mostly due to increased expression of fatty acid synthase and lipid metabolism, resulting in elevated intrahepatic levels of triglyceride and long-chain acyl-CoAs.
View Article and Find Full Text PDFType 2 diabetes is a heterogeneous disease characterized by insulin resistance and altered glucose and lipid metabolism in multiple organs. To understand the complex series of events that occur during the development of obesity-associated diabetes, we examined the temporal pattern of changes in insulin action and glucose metabolism in individual organs during chronic high-fat feeding in C57BL/6 mice. Insulin-stimulated cardiac glucose metabolism was significantly reduced after 1.
View Article and Find Full Text PDFDiabetic heart failure may be causally associated with alterations in cardiac energy metabolism and insulin resistance. Mice with heart-specific overexpression of peroxisome proliferator-activated receptor (PPAR)alpha showed a metabolic and cardiomyopathic phenotype similar to the diabetic heart, and we determined tissue-specific glucose metabolism and insulin action in vivo during hyperinsulinemic-euglycemic clamps in awake myosin heavy chain (MHC)-PPARalpha mice (12-14 weeks of age). Basal and insulin-stimulated glucose uptake in heart was significantly reduced in the MHC-PPARalpha mice, and cardiac insulin resistance was mostly attributed to defects in insulin-stimulated activities of insulin receptor substrate (IRS)-1-associated phosphatidylinositol (PI) 3-kinase, Akt, and tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3).
View Article and Find Full Text PDFInsulin resistance plays a major role in the development of type 2 diabetes and may be causally associated with increased intracellular fat content. Transgenic mice with adipocyte-specific overexpression of FOXC2 (forkhead transcription factor) have been generated and shown to be protected against diet-induced obesity and glucose intolerance. To understand the underlying mechanism, we examined the effects of chronic high-fat feeding on tissue-specific insulin action and glucose metabolism in the FOXC2 transgenic (Tg) mice.
View Article and Find Full Text PDFCaveolin-3 (Cav-3) is expressed predominantly in skeletal muscle fibers, where it drives caveolae formation at the muscle cell's plasma membrane. In vitro studies have suggested that Cav-3 may play a positive role in insulin signaling and energy metabolism. We directly address the in vivo metabolic consequences of genetic ablation of Cav-3 in mice as it relates to insulin action, glucose metabolism, and lipid homeostasis.
View Article and Find Full Text PDFThe circulating level of the inflammatory cytokine interleukin (IL)-6 is elevated in various insulin-resistant states including type 2 diabetes, obesity, cancer, and HIV-associated lipodystrophy. To determine the role of IL-6 in the development of insulin resistance, we examined the effects of IL-6 treatment on whole-body insulin action and glucose metabolism in vivo during hyperinsulinemic-euglycemic clamps in awake mice. Pretreatment of IL-6 blunted insulin's ability to suppress hepatic glucose production and insulin-stimulated insulin receptor substrate (IRS)-2-associated phosphatidylinositol (PI) 3-kinase activity in liver.
View Article and Find Full Text PDF