Publications by authors named "You-Lin Wu"

In the central nervous system, the formation of fibrotic scar after injury inhibits axon regeneration and promotes repair. However, the mechanism underlying fibrotic scar formation and regulation remains poorly understood. M2 macrophages regulate fibrotic scar formation after injury to the heart, lung, kidney, and central nervous system.

View Article and Find Full Text PDF

Excessive fat accumulation is a common phenomenon in cultured fish, which can cause metabolic disease such as fatty liver. However, the relative regulatory approach remains to be explored. Based on this, two feeding trials were conducted.

View Article and Find Full Text PDF

A mold-cast polydimethylsiloxane (PDMS) confined window was integrated with a poly-silicon wire (PSW) ion sensor. The PSW sensor surface inside the confined window was coated with a 3-aminopropyltriethoxysilane (γ-APTES) sensitive layer which allowed a single living cell to be cultivated. The change in the microenvironment due to the extracellular acidification of the single cell could then be determined by measuring the current flowing through the PSW channel.

View Article and Find Full Text PDF

This report investigates the sensing characteristics of polysilicon wire (PSW) glucose biosensors, including thickness characteristics and line-width effects on detection limits, linear range and interference immunity with membranes coated by micropipette/spin-coating and focus-ion-beam (FIB) processed capillary atomic-force-microscopy (C-AFM) tip scan/coating methods. The PSW surface was modified with a mixture of 3-aminopropyl-triethoxysilane (γ-APTES) and polydimethylsiloxane (PDMS)-treated hydrophobic fumed silica nanoparticles (NPs). We found that the thickness of the γ-APTES+NPs nonocomposite could be controlled well at about 22 nm with small relative standard deviation (RSD) with repeated C-AFM tip scan/coatings.

View Article and Find Full Text PDF

A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window.

View Article and Find Full Text PDF

This study investigated the interference elimination ability of a glucose sensor made of polysilicon wire (PSW) with a surface modified by 3-aminopropyltriethoxysilane mixed with polydimethylsiloxane-treated hydrophobic fumed silica nanoparticles plus ultra-violet illumination (γ-APTES+NPs+UV). Glucose sensing of the PSW sensor in the presence of five common interferences such as ascorbic acid (AA), uric acid (UA), acetaminophen (AP), L-cysteine (Lys), and citric acid (CA) was performed. We found that the disturbance caused by the interferences was low for interference-to-glucose concentration ratios up to 600:1 if the PSW surface is modified with γ-APTES+NPs+UV.

View Article and Find Full Text PDF