Publications by authors named "You-Kuan Zhang"

Urbanizations and industrializations may accelerate the contamination and deterioration of groundwater quality. This study aimed to evaluate the quality and potential human health risks associated with shallow groundwater in Shenzhen, China, a city characterized by high levels of urbanization and industrialization. The hydrochemistry characteristics, water quality levels, and human health risks of main ions, nutrient elements, and metals in 220 samples collected from Maozhou River Basin (MRB) located in the northwest of Shenzhen were investigated.

View Article and Find Full Text PDF

During the lateral transport with subsurface flow, amounts of manufactured volatile organic chemicals and gases dissolved in groundwater are emitted into the atmosphere via upward diffusion through soils. Quantifying gas emissions is important for assessing environmental risk associated with these constituents (e.g.

View Article and Find Full Text PDF

The fractions transformation and dissipation mechanism of Dechlorane Plus (DP) in the rhizosphere of soil-plant system were investigated and characterized by a 150-day experiment using a rhizobox system. The depuration, accumulation, and translocation of DP in rice plants were observed. The contributions of plant uptake, microbial degradation, and bound-residue formation to DP dissipation under the rhizosphere effect were modeled and quantified.

View Article and Find Full Text PDF

Mass transfer from nonaqueous phase liquid (NAPL) to entrapped air induced by a fluctuating water table commonly occurs in residual NAPL zones in aquifers. Gas bubble expansion and vertical migration due to interphase mass transfer could facilitate the upward transport of volatile organic compounds (VOCs) in the aquifer and result in higher mass fluxes into a building relative to those of diffusion-limited (D-L) VOC transport. However, the current vapor intrusion models have not considered bubble migration.

View Article and Find Full Text PDF

In order to study the characteristics of groundwater chemistry and groundwater flow system in the Xianshui River fault zone, samples of precipitation, surface water, groundwater, and hot spring samples in the Xialatuo Basin were collected and tested. Through the test data, the main ions and the sources of recharge were analyzed by means of ionic relations, correlation analysis, Gibbs plot, Piper triangular diagrams, and saturation index. The groundwater recharge sources in the basin were studied using combined hydrogen and oxygen isotope information.

View Article and Find Full Text PDF

Slug (instantaneous injection) tracer tests can be used effectively to determinate solute transport parameters in porous media such as pore velocities and dispersivities, which are usually estimated with curve-fitting methods. This study proposes a simple method to estimate conservative and reactive solute transport parameters in one-, two- and three- dimensional domains with uniform flow fields based on peak times of slug tracer tests. This method requires fewer measured data than traditional curve-fitting methods.

View Article and Find Full Text PDF

Natural dynamics such as groundwater head fluctuations may exhibit multi-fractionality, likely caused by multi-scale aquifer heterogeneity and other controlling factors, whose statistics requires efficient quantification methods. As a scaling exponent, the Hurst exponent can describe the temporal correlation or multifractal behavior in groundwater level fluctuation processes. However, the scaling behavior may change with time under natural conditions, likely due to the non-stationary evolution of internal and external conditions, which cannot be characterized by traditional methods using a single or several scaling exponents for the complex features of the overall process.

View Article and Find Full Text PDF

One-dimensional transient groundwater flow from a divide to a river in an unconfined aquifer described by the Boussinesq equation was studied. We derived the analytical solution for the water table recession and drainage change process described with a linearized Boussinesq equation with a physically based initial condition. A method for determining the average water table in the solutions was proposed.

View Article and Find Full Text PDF

Antioxidant responses induced by decabromodiphenyl ether (BDE-209) in the earthworms (Eisenia fetida) were studied after 7 days of exposure. Electron paramagnetic resonance (EPR) spectra indicated that hydroxyl radicals (•OH) in earthworms were significantly induced by 0.01-10 mg/kg of BDE-209.

View Article and Find Full Text PDF

Temporal scaling in stream discharge and hydraulic heads in riparian wells was evaluated to determine the feasibility of using spectral analysis to identify potential surface and groundwater interaction. In floodplains where groundwater levels respond rapidly to precipitation recharge, potential interaction is established if the hydraulic head (h) spectrum of riparian groundwater has a power spectral density similar to stream discharge (Q), exhibiting a characteristic breakpoint between high and low frequencies. At a field site in Walnut Creek watershed in central Iowa, spectral analysis of h in wells located 1 m from the channel edge showed a breakpoint in scaling very similar to the spectrum of Q (∼20 h), whereas h in wells located 20 and 40 m from the channel showed temporal scaling from 1 to 10,000 h without a well-defined breakpoint.

View Article and Find Full Text PDF

A low-cost, noninvasive, three-dimensional (3D), particle tracking velocimetry system was designed and built to investigate particle movement in match-index-refraction porous media. Both a uniform load of the glass beads of the same diameter and a binary load of the glass beads of two diameters were used. The purpose of the experiments is to study the effect of the two loads on the trajectories, velocity distribution, and spreading of small physical particles.

View Article and Find Full Text PDF