Nanomaterials (Basel)
September 2024
The <100> oriented single-crystalline Zirconium Carbide (ZrC) nanowires were controllably synthesized on a graphite substrate by chemical vapor deposition (CVD) with optimized growth parameters involving Zirconium tetrachloride (ZrCl), flow of methane (CH), and growth temperature. The length of nanowires is above 10 µm while the diameter is smaller than 100 nm. A single ZrC nanowire was picked up and fixed on a tungsten tip for field emission measurement.
View Article and Find Full Text PDFA single CeB nanoneedle structure has been fabricated using a focused ion beam (FIB) and its field emission characteristics have been evaluated. A converged electron beam has been obtained, attributed to its sharpened tip with a radius of curvature of about 10 nm. Combined with its low work function, the required electric field is as low as 1.
View Article and Find Full Text PDFTwo-dimensional layered materials commonly face hindered electron transfer and poor structure stability, thus limiting their application in high-rate and long-term sodium ion batteries. In the current study, we adopt finite element simulation to guide the rational design of nanostructures. By calculating the von Mises stress distribution of a series of carbon materials, we find that the hollow biconcave structure could effectively alleviate the stress concentration resulting from expansion.
View Article and Find Full Text PDFMetal-containing nanoparticles (M-NPs) in metal/nitrogen-doped carbon (M-N-C) catalysts have been considered hostile to the acidic oxygen reduction reaction (ORR). The relation between M-NPs and the active sites of metal coordinated with nitrogen (MN ) is hard to establish in acid medium owing to the poor stability of M-NPs. Herein, we develop a strategy to successfully construct a new FeCo-N-C catalyst containing highly active M-NPs and MN composite sites (M/FeCo-SAs-N-C).
View Article and Find Full Text PDF