IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally β1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2017
For many bacteria, including those important in pathogenesis, expression of a surface-localized capsular polysaccharide (CPS) can be critical for survival in host environments. In Gram-positive bacteria, CPS linkage is to either the cytoplasmic membrane or the cell wall. Despite the frequent occurrence and essentiality of these polymers, the exact nature of the cell wall linkage has not been described in any bacterial species.
View Article and Find Full Text PDFPneumococcal surface protein A (PspA) is the only pneumococcal surface protein known to strongly bind lactoferrin on the bacterial surface. In the absence of PspA Streptococcus pneumoniae becomes more susceptible to killing by human apolactoferrin (apo-hLf), the iron-free form of lactoferrin. In the present study we examined diverse strains of S.
View Article and Find Full Text PDFStreptococcus pneumoniae produces a protective capsular polysaccharide whose production must be modulated for bacterial survival within various host niches. Capsule production is affected in part by a phosphoregulatory system comprised of CpsB, CpsC, and CpsD. Here, we found that growth of serotype 2 strain D39 under conditions of increased oxygen availability resulted in decreased capsule levels concurrent with an ∼5-fold increase in Cps2B-mediated phosphatase activity.
View Article and Find Full Text PDFThe capsular polysaccharide (CPS) is essential for Streptococcus pneumoniae virulence. Its synthesis requires multiple enzymes, and defects that block completion of the pathway can be lethal in the absence of secondary suppressor mutations. In this study, we examined the functions of three capsular glycosyltransferases (Cps2F, Cps2G, and Cps2I) involved in serotype 2 CPS synthesis, whose deletions select for secondary mutations.
View Article and Find Full Text PDFStreptococcus pneumoniae (pneumococcus) expresses a capsular polysaccharide (CPS) that protects against host immunity and is synthesized by enzymes in the capsular polysaccharide synthesis (cps) locus. Serogroup 11 has six members (11A to -E) and the CPS structure of all members has been solved, except for serotype 11D. The cps loci of 11A and 11D differ by one codon (N112S) in wcrL, which putatively encodes a glycosyltransferase that adds the fourth sugar of the CPS repeating unit (RU).
View Article and Find Full Text PDFFive genes (cps2E, cps2T, cps2F, cps2G, and cps2I) are predicted to encode the glycosyltransferases responsible for synthesis of the Streptococcus pneumoniae serotype 2 capsule repeat unit, which is polymerized to yield a branched surface structure containing glucose-glucuronic acid linked to a glucose-rhamnose-rhamnose-rhamnose backbone. Cps2E is the initiating glycosyltransferase, but experimental evidence supporting the functions of the remaining glycosyltransferases is lacking. To biochemically characterize the glycosyltransferases, the donor substrate dTDP-rhamnose was first synthesized using recombinant S.
View Article and Find Full Text PDFThe bacterial pathogen Streptococcus pneumoniae expresses one of over 90 structurally distinct polysaccharide (PS) capsule serotypes. Prior PS structural analyses of the vaccine-associated serotype 20 do not agree with reports describing the genes that mediate capsule synthesis. Furthermore, using immunized human sera-based assays, serological differences were recently noted among strains typed as serotype 20.
View Article and Find Full Text PDFAnnu Rev Microbiol
January 2012
Capsular polysaccharides and exopolysaccharides play critical roles in bacterial survival strategies, and they can have important medical and industrial applications. An immense variety of sugars and glycosidic linkages leads to an almost unlimited diversity of potential polysaccharide structures. This diversity is reflected in the large number of serologically and chemically distinct polysaccharides that have been identified among both gram-positive and gram-negative bacteria.
View Article and Find Full Text PDFThe chain length of Streptococcus pneumoniae type 3 capsular polysaccharide (cellubiuronic acid) is tightly regulated by the cellubiuronic acid synthase through an assembly process involving a catalytic motif that is potentially conserved over a wide range of related processive beta-glucan synthases. Cellubiuronic acid is initiated on a lipid and is composed of alternating beta-1,3-Glc and beta-1,4-glucuronic acid (GlcUA) linkages. The entire assembly process is carried out by a polypeptide synthase thought to contain a single active site, suggesting that the donor specificity is controlled by the terminal nonreducing sugar in the acceptor subsite.
View Article and Find Full Text PDFThe processive reaction mechanisms of beta-glycosyl-polymerases are poorly understood. The cellubiuronan synthase of Streptococcus pneumoniae catalyzes the synthesis of the type 3 capsular polysaccharide through the alternate additions of beta-1,3-Glc and beta-1,4-GlcUA. The processive multistep reaction involves the sequential binding of two nucleotide sugar donors in coordination with the extension of a polysaccharide chain associated with the carbohydrate acceptor recognition site.
View Article and Find Full Text PDFA spontaneous mutant of Streptococcus pneumoniae strain D39 exhibiting elevated beta-galactosidase activity was identified. We determined that the beta-galactosidase activity was due to BgaA, a surface protein in S. pneumoniae, and that the expression of bgaA was regulated.
View Article and Find Full Text PDFExtracellular polysaccharides of many bacteria are synthesized by the Wzy polymerase-dependent mechanism, where long-chain polymers are assembled from undecaprenyl-phosphate-linked repeat units on the outer face of the cytoplasmic membrane. In gram-positive bacteria, Wzy-dependent capsules remain largely cell associated via membrane and peptidoglycan linkages. Like many Wzy-dependent capsules, the Streptococcus pneumoniae serotype 2 capsule is branched.
View Article and Find Full Text PDFRegulation of chain length is essential to the proper functioning of prokaryotic and eukaryotic polysaccharides. Modulation of polymer size by substrate concentration is an attractive but unexplored control mechanism that has been suggested for many polysaccharides. The Streptococcus pneumoniae capsular polysaccharide is essential for virulence, and regulation of its size is critical for survival in different host environments.
View Article and Find Full Text PDFThe type 3 synthase catalyzes the formation of the Streptococcus pneumoniae type 3 capsular polysaccharide [-3)-beta-D-GlcUA-(1, 4)-beta-D-Glc-(1-]n. Synthesis is comprised of two distinct catalytic phases separated by a transition step whereby an oligosaccharylphosphatidylglycerol primer becomes tightly bound to the carbohydrate acceptor recognition site of the synthase. Using the recombinant synthase in Escherichia coli membranes, we determined that a critical oligosaccharide length of approximately 8 monosaccharides was required for recognition of the growing chain by the synthase.
View Article and Find Full Text PDFThe majority of the 90 capsule types made by the gram-positive pathogen Streptococcus pneumoniae are assembled by a block-type mechanism similar to that utilized by the Wzy-dependent O antigens and capsules of gram-negative bacteria. In this mechanism, initiation of repeat unit formation occurs by the transfer of a sugar to a lipid acceptor. In S.
View Article and Find Full Text PDFThe type 3 synthase from Streptococcus pneumoniae is a processive beta-glycosyltransferase that assembles the type 3 polysaccharide [3)-beta-D-GlcUA-(1-->4)-beta-D-Glc-(1-->] by a multicatalytic process. Polymer synthesis occurs via alternate additions of Glc and GlcUA onto the nonreducing end of the growing polysaccharide chain. In the presence of a single nucleotide sugar substrate, the type 3 synthase ejects its nascent polymer and also adds a single sugar onto a lipid acceptor.
View Article and Find Full Text PDFCpsA, CpsB, CpsC, and CpsD are part of a tyrosine phosphorylation regulatory system involved in modulation of capsule synthesis in Streptococcus pneumoniae and many other gram-positive and gram-negative bacteria. Using an immunoblotting technique, we observed distinct laddering patterns of S. pneumoniae capsular polysaccharides of various serotypes and found that transfer of the polymer from the membrane to the cell wall was independent of size.
View Article and Find Full Text PDFThe Streptococcus pneumoniae capsular polysaccharides and pneumococcal surface protein A (PspA) are major determinants of virulence that are antigenically variable and capable of eliciting protective immune responses. By genetically switching the pspA genes of the capsule type 2 strain D39 and the capsule type 3 strain WU2, we showed that the different abilities of antibody to PspA to protect against these strains was not related to the PspA type expressed. Similarly, the level of specific antibody binding to PspA, other surface antigens, and surface-localized C3b did not depend on the PspA type but instead was correlated with the capsule type.
View Article and Find Full Text PDFSynthesis of the type 3 capsular polysaccharide of Streptococcus pneumoniae is catalyzed by the membrane-localized type 3 synthase, which utilizes UDP-Glc and UDP-GlcUA to form high molecular mass [3-beta-d-GlcUA-(1-->4)-beta-d-Glc-(1-->](n). Expression of the synthase in Escherichia coli resulted in synthesis of a 40-kDa protein that was reactive with antibody directed against the C terminus of the synthase and was the same size as the native enzyme. Membranes isolated from E.
View Article and Find Full Text PDFTyrosine phosphorylation is associated with polysaccharide synthesis in a number of Gram-positive and Gram-negative bacteria. In Streptococcus pneumoniae, CpsB, CpsC, and CpsD affect tyrosine phosphorylation and are critical for the production of a mature capsule in vitro. To characterize the interactions between these proteins and the phosphorylation event they modulate, cps2B, cps2C, and cps2D from the capsule type 2 S.
View Article and Find Full Text PDFNasopharyngeal colonization is a necessary first step in the pathogenesis of Streptococcus pneumoniae. Using isolates containing defined mutations in the S. pneumoniae capsule locus, we found that expression of the capsular polysaccharide is essential for colonization by the type 2 strain D39 and the type 3 strains A66 and WU2.
View Article and Find Full Text PDFSynthesis of the Streptococcus pneumoniae type 3 capsule requires the pathway glucose-6-phosphate (Glc-6-P) --> Glc-1-P --> UDP-Glc --> UDP-glucuronic acid (UDP-GlcUA) --> (GlcUA-Glc)(n). The UDP-Glc dehydrogenase and synthase necessary for the latter two steps, and essential for capsule production, are encoded by genes (cps3D and cps3S, respectively) located in the type 3 capsule locus. The phosphoglucomutase (PGM) and Glc-1-P uridylyltransferase activities necessary for the first two steps are derived largely through the actions of cellular enzymes.
View Article and Find Full Text PDFThe molecular epidemiological characteristics of all Streptococcus pneumoniae strains isolated in a nationwide manner from patients with meningitis in The Netherlands in 1994 were investigated. Restriction fragment end labeling analysis demonstrated 52% genetic clustering among these penicillin-susceptible strains, a value substantially lower than the percentage of clustering among Dutch penicillin-nonsusceptible strains. Different serotypes were found within 8 of the 28 genetic clusters, suggesting that horizontal transfer of capsular genes is common among penicillin-susceptible strains.
View Article and Find Full Text PDF