Current global COVID-19 booster scheduling strategies mainly focus on vaccinating high-risk populations at predetermined intervals. However, these strategies overlook key data: the direct insights into individual immunity levels from active serological testing and the indirect information available either through sample-based sero-surveillance, or vital demographic, location, and epidemiological factors. Our research, employing an age-, risk-, and region-structured mathematical model of disease transmission-based on COVID-19 incidence and vaccination data from Israel between 15 May 2020 and 25 October 2021-reveals that a more comprehensive strategy integrating these elements can significantly reduce COVID-19 hospitalizations without increasing existing booster coverage.
View Article and Find Full Text PDFBackground: Contact mixing plays a key role in the spread of COVID-19. Thus, mobility restrictions of varying degrees up to and including nationwide lockdowns have been implemented in over 200 countries. To appropriately target the timing, location, and severity of measures intended to encourage social distancing at a country level, it is essential to predict when and where outbreaks will occur, and how widespread they will be.
View Article and Find Full Text PDF