The Gram-negative bacterium, Legionella pneumophila, is a protozoan parasite and accidental intracellular pathogen of humans. We propose a model in which cycling through multiple protozoan hosts in the environment holds L. pneumophila in a state of evolutionary stasis as a broad host-range pathogen.
View Article and Find Full Text PDFTwo single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.
View Article and Find Full Text PDFThe known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction.
View Article and Find Full Text PDFIntroduction: The majority of breast cancers that occur in BRCA1 mutation carriers (BRCA1 carriers) are estrogen receptor-negative (ER-). Therefore, it has been suggested that ER negativity is intrinsic to BRCA1 cancers and reflects the cell of origin of these tumors. However, approximately 20% of breast cancers that develop in BRCA1 carriers are ER-positive (ER+); these cancers are more likely to develop as BRCA1 carriers age, suggesting that they may be incidental and unrelated to BRCA1 deficiency.
View Article and Find Full Text PDFThe 'p53 signature' is a benign secretory cell outgrowth in the distal Fallopian tube that shares properties with ovarian serous cancer-including p53 mutations-and is a putative serous cancer precursor. We expanded the precursor definition to all secretory cell outgrowths (SCOUTs) of 30 or more cells and scored normal (N) and altered (A) expression of both p53 and PAX2, a gene down-regulated in ovarian and endometrial cancer. SCOUTs were identified by BCL2/p73 staining in tubes from women with serous carcinoma, inherited mutations in BRCA1 or BRCA2 and controls.
View Article and Find Full Text PDFHigh-grade endometrioid and serous carcinomas of the ovary and fallopian tube are responsible for the majority of cancer deaths and comprise a spectrum that includes early or localized (tubal intraepithelial carcinoma) and advanced (invasive or metastatic) disease. We subdivided a series of these tumors into three groups, (1) classic serous, (2) mixed serous and endometrioid and (3) endometrioid carcinomas and determined: (1) the frequencies of coexisting tubal intraepithelial carcinoma, (2) frequency of a dominant ovarian mass suggesting an ovarian origin and (3) immuno-localization of WT-1, p53, PTEN, PAX2 and p16(ink4). All tumors were analyzed for p53 mutations.
View Article and Find Full Text PDFDifferentiated vulvar intraepithelial neoplasia is a unique precursor to vulvar squamous cell carcinoma that is typically HPV-negative and frequently associated with nuclear p53 staining. These features imply a mode of pathogenesis involving somatic mutations. However, the genetic relationship of differentiated vulvar intraepithelial neoplasm and vulvar squamous cell carcinoma and the role of Tp53 mutations in this process have not been resolved.
View Article and Find Full Text PDFA candidate early precursor to pelvic serous cancer, the 'p53 signature', is commonly found in the benign mucosa of the distal Fallopian tube and harbours p53 mutations and evidence of DNA damage. We examined tubes from women with pre-existing (germ-line) mutations in p53 [Li-Fraumeni syndrome (LFS)] for evidence of this precursor. Fallopian tubes from two cases of LFS were immunostained for p53, Ki-67 (proliferation) and H2AX (DNA damage response) and analysed for p53 mutations by laser capture microdissection (LCM) and p53 genomic sequencing (exons 2-11).
View Article and Find Full Text PDFGenome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres.
View Article and Find Full Text PDFFemale BRCA1 mutation carriers have a nearly 80% probability of developing breast cancer during their life-time. We hypothesized that the breast epithelium at risk in BRCA1 mutation carriers harbors mammary epithelial cells (MEC) with altered proliferation and differentiation properties. Using a three-dimensional culture technique to grow MECs ex vivo, we found that the ability to form colonies, an indication of clonality, was restricted to the aldehyde dehydrogenase 1-positive fraction in MECs but not in HCC1937 BRCA1-mutant cancer cells.
View Article and Find Full Text PDFThe development of high-throughput DNA sequencing techniques has made direct DNA sequencing of PCR-amplified genomic DNA a rapid and economical approach to the identification of polymorphisms that may play a role in disease. Point mutations as well as small insertions or deletions are readily identified by DNA sequencing. The mutations may be heterozygous (occurring in one allele while the other allele retains the normal sequence) or homozygous (occurring in both alleles).
View Article and Find Full Text PDFGerm line gain-of-function mutations in several members of the RAS/ERK pathway, including PTPN11, KRAS, and RAF1, cause the autosomal dominant genetic disorder Noonan Syndrome (NS). NS patients are at increased risk of leukemia/myeloproliferative disease and possibly some solid tumors, such as neuroblastoma. Recently, SOS1 gain of function mutations have also been shown to cause NS.
View Article and Find Full Text PDFNoonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice.
View Article and Find Full Text PDF