Publications by authors named "Yosi M Gozlan"

A T-cell receptor (TCR) with optimal avidity to a tumor antigen can be used to redirect T cells to eradicate cancer cells via adoptive cell transfer. Cancer testis antigens (CTAs) are attractive targets because they are expressed in the testis, which is immune-privileged, and in the tumor. However, CTAs are self-antigens and natural TCRs to CTAs have low affinity/avidity due to central tolerance.

View Article and Find Full Text PDF

Cytotoxic T-lymphocyte antigen 4 (CTLA4)-FasL, a homo-hexameric signal converter protein, is capable of inducing robust apoptosis in malignant cells of the B-cell lineage expressing its cognate B7 and Fas targets, while sparing nonmalignant ones. This fusion protein's striking proapoptotic efficacy stems from its complementary abilities to coordinately activate apoptotic signals and abrogate antiapoptotic ones. A limiting factor in translating FasL or Fas receptor agonists into the clinic has been lethal hepatotoxicity.

View Article and Find Full Text PDF

Adoptive transfer of T cells that have been genetically modified to express an antitumor T-cell receptor (TCR) is a potent immunotherapy, but only if TCR avidity is sufficiently high. Endogenous TCRs specific to shared (self) tumor-associated antigens (TAAs) have low affinity due to central tolerance. Therefore, for effective therapy, anti-TAA TCRs with higher and optimal avidity must be generated.

View Article and Find Full Text PDF

The mammalian NAD+ dependent deacetylase, SIRT1, was shown to be a key protein in regulating glucose homeostasis, and was implicated in the response to calorie restriction. We show here that levels of SIRT1 increased in response to nutrient deprivation in cultured cells, and in multiple tissues of mice after fasting. The increase in SIRT1 levels was due to stabilization of SIRT1 protein, and not an increase in SIRT1 mRNA.

View Article and Find Full Text PDF

Sirtuins have been shown to regulate life-span in response to nutritional availability. We show here that levels of the mammalian sirtuin, SIRT6, increased upon nutrient deprivation in cultured cells, in mice after fasting, and in rats fed a calorie-restricted diet. The increase in SIRT6 levels is due to stabilization of SIRT6 protein, and not via an increase in SIRT6 transcription.

View Article and Find Full Text PDF