Dynamic mode (DM) decomposition decomposes spatiotemporal signals into basic oscillatory components (DMs). DMs can improve the accuracy of neural decoding when used with the nonlinear Grassmann kernel, compared to conventional power features. However, such kernel-based machine learning algorithms have three limitations: large computational time preventing real-time application, incompatibility with non-kernel algorithms, and low interpretability.
View Article and Find Full Text PDFObjective: Brain-computer interfaces (BCIs) using electrocorticographic (ECoG) signals have been developed to restore the communication function of severely paralyzed patients. However, the limited amount of information derived from ECoG signals hinders their clinical applications. We aimed to develop a method to decode ECoG signals using spatiotemporal patterns characterizing movement types to increase the amount of information gained from these signals.
View Article and Find Full Text PDF