Robust localization of self-reproducing autocatalytic chemistries is a key step in the realization of heritable and evolvable chemical systems. While autocatalytic chemical reaction networks already possess attributes such as heritable self-reproduction and evolvability, localizing functional multispecies networks within complex primitive phases, such as coacervates, has remained unexplored. Here, we show the self-reproduction of the Azoarcus ribozyme system within charge-rich coacervates where catalytic ribozymes are produced by the autocatalytic assembly of constituent smaller RNA fragments.
View Article and Find Full Text PDFWe demonstrate that a recombinase ribozyme achieves multiple functions in the same reaction network: self-reproduction, iterative elongation and circularization of other RNAs, leading to synthesis of diverse products predicted by a kinetic model. This shows that key mechanisms can be integrated and controlled toward Darwinian evolution in RNA reaction networks.
View Article and Find Full Text PDFUnderstanding the emergence of life from (primitive) abiotic components has arguably been one of the deepest and yet one of the most elusive scientific questions. Notwithstanding the lack of a clear definition for a living system, it is widely argued that heredity (involving self-reproduction) along with compartmentalization and metabolism are key features that contrast living systems from their non-living counterparts. A minimal living system may be viewed as "a self-sustaining chemical system capable of Darwinian evolution".
View Article and Find Full Text PDFThe emergence of replicases that can replicate themselves is a central issue in the origin of life. Recent experiments suggest that such replicases can be realized if an RNA polymerase ribozyme is divided into fragments short enough to be replicable by the ribozyme and if these fragments self-assemble into a functional ribozyme. However, the continued self-replication of such replicases requires that the production of every essential fragment be balanced and sustained.
View Article and Find Full Text PDFThe emergence and maintenance of polymers with complex sequences pose a major question in the study of the origin of life. To answer this, we study a model polymerization reaction, where polymers are synthesized by stepwise ligation from two types of monomers, catalyzed by a long polymer as a template. Direct stochastic simulation and dynamical systems analysis reveal that the most dominant polymer sequence in a population successively changes, depending on the flow rate of monomers to the system, with more complex sequences selected at a lower flow rate.
View Article and Find Full Text PDFA biological system consists of a variety of polymers that are synthesized from monomers by catalysis, which exists only for some long polymers. It is important to elucidate the emergence and sustenance of such autocatalytic polymerization. We analyze here the stochastic polymerization reaction dynamics to investigate the transition time from a state with almost no catalysts to a state with sufficient catalysts.
View Article and Find Full Text PDF