Publications by authors named "Yoshiura S"

Targeting the drug tolerant persister (DTP) state in cancer cells should prevent further development of resistance mechanisms. This study explored combination therapies to inhibit alectinib-induced DTP cell formation from anaplastic lymphoma kinase-positive non-small cell lung cancer (ALK + NSCLC) patient-derived cells. After drug-screening 3114 compounds, pan-HER inhibitors (ErbB pathway) and tankyrase1/2 inhibitors (Wnt/β-catenin signaling) emerged as top candidates to inhibit alectinib-induced DTP cells growth.

View Article and Find Full Text PDF
Article Synopsis
  • The "dark age consistency ratio" is a proposed new observable for studying the 21 cm global signal during the universe's dark ages, aimed at testing models beyond the standard ΛCDM cosmological model.
  • This ratio is based on the idea that the shape of the 21 cm signal's frequency response is largely unaffected by cosmological parameters in the ΛCDM framework, yielding a specific value that can help distinguish between models.
  • The observable only requires brightness temperature measurements at a few frequency bands, making it feasible to evaluate cosmological theories even with limited data from upcoming lunar telescope missions.
View Article and Find Full Text PDF

Cancers can develop resistance to treatment with ALK tyrosine kinase inhibitors (ALK-TKIs) via emergence of a subpopulation of drug-tolerant persister (DTP) cells that can survive initial drug treatment long enough to acquire genetic aberrations. DTP cells are thus a potential therapeutic target. We generated alectinib-induced DTP cells from a patient-derived ALK non-small-cell lung cancer (NSCLC) cell line and screened 3114 agents in the anticancer compounds library (TargetMol).

View Article and Find Full Text PDF

Cancer cell resistance arises when tyrosine kinase inhibitor (TKI)-targeted therapies induce a drug-tolerant persister (DTP) state with growth via genetic aberrations, making DTP cells potential therapeutic targets. We screened an anti-cancer compound library and identified fibroblast growth factor receptor 1 (FGFR1) promoting alectinib-induced anaplastic lymphoma kinase (ALK) fusion-positive DTP cell's survival. FGFR1 signaling promoted DTP cell survival generated from basal FGFR1- and fibroblast growth factor 2 (FGF2)-high protein expressing cells, following alectinib treatment, which is blocked by FGFR inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • Polatuzumab vedotin (Pola) is approved for treating diffuse large B-cell lymphoma (DLBCL), but its effectiveness after initial treatment in resistant cases is unclear.
  • Researchers created Pola-resistant DLBCL cell lines to study the combined effect of Pola and rituximab (Rit), a standard treatment for DLBCL.
  • Findings showed that Pola enhances the sensitivity of resistant cancer cells to Rit, suggesting that retreatment with Pola and Rit could effectively combat resistant DLBCL.
View Article and Find Full Text PDF

Polatuzumab vedotin (Pola) is an antibody-drug conjugate that targets the B-cell antigen CD79b and delivers monomethyl auristatin E (MMAE). It is approved in combination with bendamustine and rituximab (Rit) for relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL). Understanding the molecular basis of Pola combination therapy with Rit, the key component for the treatment of DLBCL, is important to establish the effective treatment strategies against r/r DLBCL.

View Article and Find Full Text PDF

Background: The glycoengineered, humanized anti-CD20 antibody obinutuzumab is indicated for previously untreated or relapsed/refractory CD20-positive follicular lymphoma (FL). However, the effectiveness of obinutuzumab retreatment in relapsed/refractory FL after prior obinutuzumab-containing therapy is unclear. To address this issue, we investigated the antitumor activity of obinutuzumab plus bendamustine in obinutuzumab-resistant tumors established from a human non-Hodgkin lymphoma xenograft model.

View Article and Find Full Text PDF

Background: Obinutuzumab, a Type II anti-CD20 antibody, is used to treat follicular lymphoma. A major mode of action of obinutuzumab is antibody-dependent cellular cytotoxicity (ADCC). Knowledge of the mechanisms of resistance to obinutuzumab is important for the development of next-line strategies to follow obinutuzumab-containing therapy, including obinutuzumab retreatment.

View Article and Find Full Text PDF

Follicular lymphoma commonly recurs and is difficult to cure. Obinutuzumab is a humanized glycoengineered type II anti-CD20 antibody with a mode of action that includes induction of antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and direct cell death. There is no evidence on the effectiveness of retreatment with obinutuzumab in patients with prior obinutuzumab treatment.

View Article and Find Full Text PDF

Purpose: Trastuzumab emtansine (T-DM1) is the standard treatment in the current second-line therapy of human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. However, a useful therapy after T-DM1 resistance has not been established. In this study, we established two different HER2-positive T-DM1-resistant cancer cells and evaluated the antitumor effect of trastuzumab in combination with pertuzumab (TRAS + PER).

View Article and Find Full Text PDF

Cellular polarization is fundamental for various biological processes. The Par network system is conserved for cellular polarization. Its core complex consists of Par3, Par6, and aPKC.

View Article and Find Full Text PDF

During development, directional cell division is a major mechanism for establishing the orientation of tissue growth. Drosophila neuroblasts undergo asymmetric divisions perpendicular to the overlying epithelium to produce descendant neurons on the opposite side, thereby orienting initial neural tissue growth. However, the mechanism remains elusive.

View Article and Find Full Text PDF

Somite formation occurs every 2 hours in mouse embryos by periodic segmentation of the anterior ends of the presomitic mesoderm, and this process is controlled by a biological clock called the segmentation clock. During this process, the basic helix-loop-helix gene Hes7 is cyclically expressed, and each cycle leads to generation of a bilateral pair of somites. Both sustained expression and loss of expression of Hes7 result in severe somite fusion, indicating that Hes7 constitutes an essential component of the segmentation clock.

View Article and Find Full Text PDF

Serum response has been used as a model for studying signaling transduction for many biological events such as cell proliferation and survival. Although expression of many genes is up- or down-regulated after serum stimulation, the Notch effector Hes1 displays oscillatory response. However, the precise mechanism and biological significance of this oscillation remain to be determined.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the effects of various genes related to photoreceptor development on rodent and primate iris cells and the potential of iris cells as donor cells for retinal transplantation.

Methods: Adult rat and monkey iris tissue were cultured in serum-free medium containing basic fibroblast growth factor. Gene deliveries of Crx, Nrl, NeuroD and some combinations (Crx-Nrl, Crx-NeuroD) were performed with recombinant retrovirus.

View Article and Find Full Text PDF

Transcription of messenger RNAs (mRNAs) for Notch signaling molecules oscillates with 2-hour cycles, and this oscillation is important for coordinated somite segmentation. However, the molecular mechanism of such oscillation remains to be determined. Here, we show that serum treatment of cultured cells induces cyclic expression of both mRNA and protein of the Notch effector Hes1, a basic helix-loop-helix (bHLH) factor, with 2-hour periodicity.

View Article and Find Full Text PDF