Publications by authors named "Yoshito Oshima"

Current research analyzing the effects of water in the field of homogeneous and heterogeneous reactions of organics in sub- and supercritical water are reviewed in this article. Since the physical properties of water (e.g.

View Article and Find Full Text PDF

Spray incineration and supercritical water oxidation (SCWO) processes have been used for detoxifying waste organic fluids in the University of Tokyo. In this study, we aim to elucidate the environmental aspects of these waste treatment processes by life cycle assessment (LCA). Through the investigation of actual plants, the inventory data and other characteristics of actual plants were collected and analyzed.

View Article and Find Full Text PDF

The management of corporate social responsibility (CSR) has recently become a critical concern for companies in advanced countries. For universities, there is a requirement to contribute to the promotion of CSR, resulting in graduates who have sufficient cognition of and a good attitude towards CSR. In addition, universities have social responsibilities, which can be called "University Social Responsibility (USR).

View Article and Find Full Text PDF

For the on-site treatment of laboratory waste, we have been developing a compact-sized reaction system for the treatment of laboratory wastewater using supercritical water oxidation (SCWO) technology. Pharmaceutical laboratory wastewater is one of the most difficult wastewaters to treat because of its high concentration of halogenated organic compounds. We proposed a new cascade process in which two reactors are consecutively combined, carrying out hydrolysis in the first reactor followed by SCWO in the second reactor, for the complete removal of halogenated organic compounds.

View Article and Find Full Text PDF

Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

View Article and Find Full Text PDF

Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol (o-CP) in supercritical water (SCW) were studied in this paper under the conditions of 450 degrees C and 25 MPa. Experimental results indicated that the dechlorination of o-CP can be accelerated significantly by all alkalis investigated. The dechlorination of o-CP proceeded mainly via two pathways: hydrodechlorination and hydrolysis.

View Article and Find Full Text PDF