Background: Periostin is a secreted matricellular protein critical for epithelial-mesenchymal transition and carcinoma metastasis. In glioblastoma, it is highly upregulated compared with normal brain, and existing reports indicate potential prognostic and functional importance in glioma. However, the clinical implications of periostin expression and function related to its therapeutic potential have not been fully explored.
View Article and Find Full Text PDFThe primate brain successfully recognizes objects, even when they are partially occluded. To begin to elucidate the neural substrates of this perceptual capacity, we measured the responses of shape-selective neurons in visual area V4 while monkeys discriminated pairs of shapes under varying degrees of occlusion. We found that neuronal shape selectivity always decreased with increasing occlusion level, with some neurons being notably more robust to occlusion than others.
View Article and Find Full Text PDFIncreasing age is the most robust predictor of greater malignancy and treatment resistance in human gliomas. However, the adverse association of clinical course with aging is rarely considered in animal glioma models, impeding delineation of the relative importance of organismal versus progenitor cell aging in the genesis of glioma malignancy. To address this limitation, we implanted transformed neural stem/progenitor cells (NSPCs), the presumed cells of glioma origin, from 3- and 18-month-old mice into 3- and 20-month host animals.
View Article and Find Full Text PDFWe report a novel class of V4 neuron in the macaque monkey that responds selectively to equiluminant colored form. These "equiluminance" cells stand apart because they violate the well established trend throughout the visual system that responses are minimal at low luminance contrast and grow and saturate as contrast increases. Equiluminance cells, which compose ∼22% of V4, exhibit the opposite behavior: responses are greatest near zero contrast and decrease as contrast increases.
View Article and Find Full Text PDFPast studies of shape coding in visual cortical area V4 have demonstrated that neurons can accurately represent isolated shapes in terms of their component contour features. However, rich natural scenes contain many partially occluded objects, which have "accidental" contours at the junction between the occluded and occluding objects. These contours do not represent the true shape of the occluded object and are known to be perceptually discounted.
View Article and Find Full Text PDF