Publications by authors named "Yoshito Chikaraishi"

Ammonia (NH) is a simple and essential nitrogen carrier in the universe. Its adsorption on mineral surfaces is an important step in the synthesis of nitrogenous organic molecules in extraterrestrial environments. The nitrogen isotopic ratios provide a useful tool for understanding the formation processes of N-bearing molecules.

View Article and Find Full Text PDF

Microfluidic capillary electrophoresis-mass spectrometry (CE-MS) is a rapid and highly accurate method to determine isotopomer patterns in isotopically labeled compounds. Here, we developed a novel method for tracer-based metabolomics using CE-MS for underivatized proteinogenic amino acids. The method consisting of a ZipChip CE system and a high-resolution Orbitrap Fusion Tribrid mass spectrometer allows us to obtain highly accurate data from 1 μl of 100 nmol/l amino acids comparable to a mere 1 [Formula: see text] 10-10 prokaryotic cells.

View Article and Find Full Text PDF
Article Synopsis
  • Polycyclic aromatic hydrocarbons (PAHs) make up about 20% of carbon in the interstellar medium and can form under various conditions, including in hot circumstellar environments and cold interstellar clouds.
  • Isotopic analysis of PAHs from asteroid Ryugu and meteorite Murchison shows that some PAHs, like naphthalene, fluoranthene, and pyrene, have higher carbon isotopic values than expected, indicating they likely formed in the interstellar medium rather than in hot environments.
  • In contrast, the PAHs phenanthrene and anthracene from Ryugu display isotopic values that suggest they were formed through higher-temperature reactions.
View Article and Find Full Text PDF

The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples.

View Article and Find Full Text PDF

Microbial symbiosis drives physiological processes of higher-order systems, including the acquisition and consumption of nutrients that support symbiotic partner reproduction. Metabolic analytics provide new avenues to examine how chemical ecology, or the conversion of existing biomass to new forms, changes over a symbiotic life cycle. We applied these approaches to the nematode Steinernema carpocapsae, its mutualist bacterium, Xenorhabdus nematophila, and the insects they infect.

View Article and Find Full Text PDF

Solvent-soluble organic matter (SOM) in meteorites, which includes life's building molecules, is suspected to originate from the cold region of the early solar system, on the basis of C enrichment in the molecules. Here, we demonstrate that the isotopic characteristics are reproducible in amino acid synthesis associated with a formose-type reaction in a heated aqueous solution. Both thermochemically driven formose-type reaction and photochemically driven formose-type reaction likely occurred in asteroids and ice-dust grains in the early solar system.

View Article and Find Full Text PDF

A novel species of the family Alepocephalidae (slickheads), Narcetes shonanmaruae, is described based on four specimens collected at depths greater than 2171 m in Suruga Bay, Japan. Compared to other alepocephalids, this species is colossal (reaching ca. 140 cm in total length and 25 kg in body weight) and possesses a unique combination of morphological characters comprising anal fin entirely behind the dorsal fin, multiserial teeth on jaws, more scale rows than congeners, precaudal vertebrae less than 30, seven branchiostegal rays, two epurals, and head smaller than those of relatives.

View Article and Find Full Text PDF

To adapt to ecological and environmental conditions, species can change their ecological niche (e.g., interactions among species) and function (e.

View Article and Find Full Text PDF

Sugars are essential molecules for all terrestrial biota working in many biological processes. Ribose is particularly essential as a building block of RNA, which could have both stored information and catalyzed reactions in primitive life on Earth. Meteorites contain a number of organic compounds including key building blocks of life, i.

View Article and Find Full Text PDF

As pollen and nectar foragers, bees have long been considered strictly herbivorous. Their pollen provisions, however, are host to abundant microbial communities, which feed on the pollen before and/or while it is consumed by bee larvae. In the process, microbes convert pollen into a complex of plant and microbial components.

View Article and Find Full Text PDF

Objective: The inhabitants of several sites in the Upper Tigris Valley, such as Hakemi Use, domesticated animals and cereals during the Pottery Neolithic period, while the inhabitants in this valley were hunter-gatherers in the Pre-Pottery Neolithic period, consuming freshwater and terrestrial food resources. However, there is considerable uncertainty surrounding whether or not changes in dietary food composition accompanied the shift in food production away from foraging. In order to reveal the impact of the development of agriculture on the human diet over the Pre-Pottery and Pottery Neolithic periods in this region, we analyzed the isotopic compositions of amino acids from the farmers at the Hakemi Use Pottery Neolithic site, and compared them with those from the Pre-Pottery hunter-gatherers in the close region.

View Article and Find Full Text PDF

We investigated how foraging habits vary among three ecologically distinct wide-ranging seabirds. Using amino acid δN proxies for nutrient regime (δN) and trophic position (ΔδN), we compared Newell's shearwater (Puffinus newelli) and Laysan albatross (Phoebastria immutabilis) foraging habits over the past 50-100 years, respectively, to published records for the Hawaiian petrel (Pterodroma sandwichensis). Standard ellipses constructed from the isotope proxies show that inter-population and interspecific foraging segregation have persisted for several decades.

View Article and Find Full Text PDF

Shallow-water hydrothermal vent ecosystems are distinct from the deep-sea counterparts, because they are in receipt of sustenance from both chemosynthetic and photosynthetic production and have a lack of symbiosis. The trophic linkage and energy flow in these ecosystems, however remain elusive, which allows us poor understanding of the whole spectrum of biological components distributed across such environmental gradients. In this study, a thorough isotopic survey was conducted on various biological specimens and suspended particulates collected along four transects across the venting features of a shallow-water hydrothermal field off Kueishan Island, Taiwan.

View Article and Find Full Text PDF

The abundance and biomass of benthic foraminifera are high in intertidal rocky-shore habitats. However, the availability of food to support their high biomass has been poorly studied in these habitats compared to those at seafloor covered by sediments. Previous field and laboratory observations have suggested that there is diversity in the food preferences and modes of life among rocky-shore benthic foraminifera.

View Article and Find Full Text PDF

Oceanic methane from global deep-sea sediment is largely consumed through microbially mediated sulfate-coupled oxidation, resulting in C-depleted cell biomass of anaerobic methanotrophic archaea (ANME). The general ecological importance of subseafloor ANME has been well recognized in the last two decades. However, the crucial biochemical pathways for the overall anaerobic oxidation of methane (AOM) still remain enigmatic.

View Article and Find Full Text PDF

Inorganic carbon fixation is essential to sustain life on Earth, and the reductive tricarboxylic acid (rTCA) cycle is one of the most ancient carbon fixation metabolisms. A combination of genomic, enzymatic, and metabolomic analyses of a deeply branching chemolithotrophic ABI70S6 revealed a previously unknown reversible TCA cycle whose direction was controlled by the available carbon source(s). Under a chemolithoautotrophic condition, a rTCA cycle occurred with the reverse reaction of citrate synthase (CS) and not with the adenosine 5'-triphosphate-dependent citrate cleavage reactions that had been regarded as essential for the conventional rTCA cycle.

View Article and Find Full Text PDF

Bats perform important ecosystem services, but it remains difficult to quantify their dietary strategies and trophic position (TP) in situ. We conducted measurements of nitrogen isotopes of individual amino acids (δ N) and bulk-tissue carbon (δ C) and nitrogen (δ N) isotopes for nine bat species from different feeding guilds (nectarivory, frugivory, sanguivory, piscivory, carnivory, and insectivory). Our objective was to assess the precision of δ N-based estimates of TP relative to other approaches.

View Article and Find Full Text PDF
Article Synopsis
  • Early modern humans in Europe showed high nitrogen levels in their bone collagen, often linked to freshwater resource consumption, although mammoth meat was also a potential source.
  • The Buran-Kaya III site in Crimea, dating back 37.8 to 33.1 ka cal BP, allowed researchers to analyze human remains in context with other fauna and apply new isotopic techniques to better understand diet.
  • Findings indicate a diet that included not just high nitrogen prey, like mammoth and other terrestrial animals, but also plant proteins, suggesting a diverse omnivorous diet for these ancient humans.
View Article and Find Full Text PDF

The relationship between biodiversity and ecosystem functioning is an important theme in environmental sciences. We propose a new index for configuration of the biomass pyramid in an ecosystem, named integrated trophic position (iTP). The iTP is defined as a sum of trophic positions (i.

View Article and Find Full Text PDF

Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (="brown") food webs has remained unresolved. Measurement of detritivore trophic position is complicated by the fact that detritus is suffused with microbes, creating a detrital complex of living and nonliving biomass. Given that microbes and metazoans are trophic analogues of each other, animals feeding on detrital complexes are ingesting other detritivores (microbes), which should elevate metazoan trophic position and should be rampant within brown food webs.

View Article and Find Full Text PDF

It is widely held that sterols are key cyclic triterpenoid lipids in eukaryotic cell membranes and are synthesized through oxygen-dependent multienzyme pathways. However, there are known exceptions-ciliated protozoans, such as Tetrahymena, along with diverse low-oxygen-adapted eukaryotes produce, instead of sterols, the cyclic triterpenoid lipid tetrahymanol that does not require molecular oxygen for its biosynthesis. Here, we report that a number of anaerobic microbial eukaryotes (protists) utilize neither sterols nor tetrahymanol in their membranes.

View Article and Find Full Text PDF

The differential discrimination of nitrogen isotopes (N/N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass.

View Article and Find Full Text PDF

Sterols are key cyclic triterpenoid lipid components of eukaryotic cellular membranes, which are synthesized through complex multi-enzyme pathways. Similar to most animals, Bathymodiolus mussels, which inhabit deep-sea chemosynthetic ecosystems and harbor methanotrophic and/or thiotrophic bacterial endosymbionts, possess cholesterol as their main sterol. Based on the stable carbon isotope analyses, it has been suggested that host Bathymodiolus mussels synthesize cholesterol using a sterol intermediate derived from the methanotrophic endosymbionts.

View Article and Find Full Text PDF

Human-induced ecological change in the open oceans appears to be accelerating. Fisheries, climate change and elevated nutrient inputs are variously blamed, at least in part, for altering oceanic ecosystems. Yet it is challenging to assess the extent of anthropogenic change in the open oceans, where historical records of ecological conditions are sparse, and the geographical scale is immense.

View Article and Find Full Text PDF