Conjugated polymers (CPs) offer the potential for sustainable semiconductor devices due to their low cost and inherent molecular self-assembly. Enhanced crystallinity and molecular orientation in thin films of solution-processable CPs have significantly improved organic electronic device performance. In this work, three methods, namely spin coating, dip coating, and unidirectional floating-film transfer method (UFTM), were utilized with their parametric optimization for fabricating RR-P3HT films.
View Article and Find Full Text PDFThe fabrication of high-performance Organic Phototransistors (OPTs) by depositing Al-islands atop Poly(3-hexylthiophene) (P3HT) thin film coated using the unidirectional floating-film transfer method (UFTM) has been realized. Further, the effect of Al-island thickness on the OPTs' performance has been intensively investigated using X-ray photoelectron spectroscopy, X-ray Diffraction, Atomic force microscopy and UV-Vis spectroscopy analysis. Under the optimized conditions, OPTs' mobility and on-off ratio were found to be 2 × 10 cm V s and 3 × 10, respectively.
View Article and Find Full Text PDFThis present study optimized the cellulose nanofiber (CNF) loading and melt processing conditions of poly(3-hydroxybutyrate--3-hydroxyhexanoate) P(HB--11% HHx) bionanocomposite fabrication in twin screw extruder by using the response surface methodology (RSM). A face-centered central composite design (CCD) was applied to statistically specify the important parameters, namely CNF loading (1-9 wt.%), rotational speed (20-60 rpm), and temperature (135-175 °C), on the mechanical properties of the P(HB--11% HHx) bionanocomposites.
View Article and Find Full Text PDFCO levels in the atmosphere are growing as a result of the burning of fossil fuels to meet energy demands. The introduction of chemical looping combustion (CLC) as an alternative to traditional combustion by transporting oxygen emphasizes the need to develop greener and more economical energy systems. Metal oxide, also defined as an oxygen carrier (OC), transports oxygen from the air to the fuel.
View Article and Find Full Text PDFLarge area (>20 cm × 2 cm)-oriented thin films of PQT-C12 with varying molecular weight and polydispersity index (PDI) were fabricated by the ribbon-shaped floating film transfer method aiming toward their application as an active semiconductor element of organic field effect transistors (OFETs). Investigation on the influence of the molecular weight and PDI upon the extent of molecular alignment and anisotropic charge transport was systematically carried out. It has been demonstrated that high molecular weight in combination with low PDI not only leads to a very high optical anisotropy >10 but also high charge carrier anisotropy with a hole mobility of about 0.
View Article and Find Full Text PDFA new halogen-free and environmental-friendly method using water and ethanol is developed as an alternative for the recovery of polyhydroxyalkanoates (PHA) from recombinant Cupriavidus necator in comparison to the established chloroform extraction method. After optimisation, our results showed that the halogen-free method produced a PHA with 81% purity and 96% recovery yield, in comparison to the chloroform extraction system which resulted in a highly pure PHA with 95% yield. Although the purity of the PHA using the new method is lower, the molecular weight of the extracted PHA is not compromised.
View Article and Find Full Text PDF