Publications by authors named "Yoshitaka Kobayakawa"

The symbiotic hydra has a stable symbiotic relationship with the green alga . This hydra appears to cospeciate with the symbiotic alga, and some strains are known to have strain-specific host/symbiont combinations. To investigate the mechanism of the specificity between host and symbiont, we explored the effect of the removal or exchange of symbionts in two distantly related strains (K10 and M9).

View Article and Find Full Text PDF
Article Synopsis
  • Some strains of brown hydra can host the green algae Chlorococcum as symbionts, but most symbionts introduced artificially are unstable, making these relationships rare in nature.
  • A study compared gene expression in newly established (strain 105G) and native (strain J7) symbiotic hydra, revealing both strains had similar expression changes, including increased lysosomal enzyme activity and decreased nematocyte-related genes.
  • The research also found that only strain 105G showed increased gene activity for translation and respiration, and inhibition of translation with rapamycin led to significant degeneration of symbiotic strains, highlighting the importance of cellular metabolic balance for successful endosymbiosis.
View Article and Find Full Text PDF

Sleep behaviors are observed even in nematodes and arthropods, yet little is known about how sleep-regulatory mechanisms have emerged during evolution. Here, we report a sleep-like state in the cnidarian with a primitive nervous organization. sleep was shaped by homeostasis and necessary for cell proliferation, but it lacked free-running circadian rhythms.

View Article and Find Full Text PDF

Background: Day-night behavioral variation is observed in most organisms, and is generally controlled by circadian clocks and/or synchronization to environmental cues. species, which are freshwater cnidarians, are thought to lack the core clock genes that form transcription-translation feedback loops in clock systems. In this study, we examined whether hydras exhibit diel rhythms in terms of behavior and gene expression levels without typical clock genes.

View Article and Find Full Text PDF

Some hydra strains belonging to the vulgaris group show a symbiotic relationship with green algae Chlorococcum sp. The symbiotic green algae can escape from the host polyps and can form swimming zoospores (which have two flagella) in culture solution. We observed that co-culture with the symbiotic polyps caused horizontal transmission of the symbionts into some non-symbiotic hydra strains that have no symbionts in nature and that belong not only to the vulgaris group but also to other hydra species groups.

View Article and Find Full Text PDF

Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains.

View Article and Find Full Text PDF

Among 8000-9000 species of Cnidaria, only several dozens of species of Hydrozoa have been found in the fresh water. Hydra is such a fresh water polyp and has been used as a good material for research in developmental biology, regeneration and pattern formation. Although the genus Hydra has only a few ten species, its distribution is cosmopolitan.

View Article and Find Full Text PDF

From an evolutionary point of view, Hydra has one of the most primitive nervous systems among metazoans. Two different groups of peptides that affect neuron differentiation were identified in a systematic screening of peptide signaling molecules in Hydra. Within the first group of peptides, a neuropeptide, Hym-355, was previously shown to positively regulate neuron differentiation.

View Article and Find Full Text PDF

Stichopin, a 17-amino acid peptide isolated from a sea cucumber, affects the stiffness change of the body-wall catch connective tissues and the contraction of the body-wall muscles. The localization of stichopin in sea cucumbers was studied by indirect immunohistochemistry using antiserum against stichopin. Double staining was performed with both stichopin antiserum and 1E11, the monoclonal antibody specific to echinoderm nerves.

View Article and Find Full Text PDF

We isolated a novel gene by a differential-display RT-PCR method comparing basal disk tissue and peduncle tissue in a species of Hydra, Pelmatohydra robusta, and we referred to it as anklet. The putative anklet product has a signal sequence in its N-terminus, and it has one MAC/PF domain and one EGF domain. In normal hydra, the expression of anklet was restricted in the periphery of the basal disk and the lowest region of the peduncle.

View Article and Find Full Text PDF

KPNAYKGKLPIGLWamide, a novel member of the GLWamide peptide family, was isolated from Hydra magnipapillata. The purification was monitored with a bioassay: contraction of the retractor muscle of a sea anemone, Anthopleura fuscoviridis. The new peptide, termed Hym-370, is longer than the other GLWamides previously isolated from H.

View Article and Find Full Text PDF

Foot regeneration in the freshwater hydra Pelmatohydra robusta was examined using a monoclonal antibody AE03 as a marker. This antibody specifically recognizes mucous-producing ectodermal epithelial cells in the basal disk, but not cells in the peduncle region located just above the basal disk in the foot. When the basal disk was removed by amputation at the upper or lower part of the peduncle, AE03-positive (basal disk) cells always appeared at the regenerating tip of the footless polyp approximately 12-16 h later.

View Article and Find Full Text PDF