Fluoride can alter the formation of mineralized tissues, including enamel, dentin, and bone. Dentin fluorosis occurs in tandem with enamel fluorosis. However, the pathogenesis of dentin fluorosis and its mechanisms are poorly understood.
View Article and Find Full Text PDFInduction of apoptosis in response to various genotoxic stresses could block transmission of teratogenic mutations to progeny cells. The severity of biological effects following irradiation depends on the stage at which embryos are irradiated during embryogenesis. We reported previously that irradiation of medaka embryos 3 days post fertilization (dpf) with 10 Gy of gamma rays induced high incidence of apoptotic cells in the mid-brain, however, the embryos hatched normally and developed without apparent malformations.
View Article and Find Full Text PDFSp7 is a zinc finger transcription factor that is essential for osteoblast differentiation in mammals. To verify the characteristic features of osteoblast-lineage cells in teleosts, we established medaka sp7 mutants using a transcription activator-like effector nuclease (TALEN) genome editing system. These mutants showed severe defects in the formation of skeletal structures.
View Article and Find Full Text PDFBone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days.
View Article and Find Full Text PDFThe bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station.
View Article and Find Full Text PDFThe fracture healing research, which has been performed in mammalian models not only for clinical application but also for bone metabolism, revealed that generally osteoblasts are induced to enter the fracture site before the induction of osteoclasts for bone remodeling. However, it remains unknown how and where osteoclasts and osteoblasts are induced, because it is difficult to observe osteoclasts and osteoblasts in a living animal. To answer these questions, we developed a new fracture healing model by using medaka.
View Article and Find Full Text PDFThe small-sized teleost fish medaka, Oryzias latipes, has as many as 1000 pharyngeal teeth undergoing continuous replacement. In this study, we sought to identify the tooth-forming units and determine its replacement cycles, and further localize odontogenic stem cell niches in the pharyngeal dentition of medaka to gain insights into the mechanisms whereby continuous tooth replacement is maintained. Three-dimensional reconstruction of pharyngeal epithelium and sequential fluorochrome labeling of pharyngeal bones and teeth indicated that the individual functional teeth and their successional teeth were organized in families, each comprising up to five generations of teeth and successional tooth germs, and that the replacement cycle of functional teeth was approximately 4 weeks.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2014
Atomic-resolution imaging of beam-sensitive biominerals is extremely challenging, owing to their fairly complex structures and the damage caused by electron irradiation. Herein, we overcome these difficulties by performing aberration-corrected electron microscopy with low-dose imaging techniques, and report the successful direct atomic-resolution imaging of every individual atomic column in the complex fluorapatite structure of shark tooth enameloid, which can be of paramount importance for teeth in general. We demonstrate that every individual atomic column in shark tooth enameloid can be spatially resolved, and has a complex fluorapatite structure.
View Article and Find Full Text PDFFibroblast growth factors (FGFs) regulate the proliferation and differentiation of various cells via their respective receptors (FGFRs). During the early stages of tooth development in fetal mice, FGFs and FGFRs have been shown to be expressed in dental epithelia and mesenchymal cells at the initial stages of odontogenesis and to regulate cell proliferation and differentiation. However, little is known about the expression patterns of FGFs in the advanced stages of tooth development.
View Article and Find Full Text PDFIt is disputed if ameloblasts in the maturation zone of the enamel organ mainly buffer protons released by hydroxyapatite (HA) crystal growth or if they periodically secrete protons to create alternating acidic and alkaline conditions. The latter hypothesis predicts alternating pH regimes in maturing enamel, which would be affected by pharmacological interference with ameloblast H(+)-secretion. This study tests these predictions.
View Article and Find Full Text PDFAmong the various kinds of fibroblasts existing in the human body, the periodontal ligament (PDL) fibroblasts have been suggested as multipotent cells. Periodontal ligament fibroblasts are characterized by rapid turnover, a high remodeling capacity and remarkable capacity for renewal and repair. They also differentiate into osteoblasts and cementoblasts.
View Article and Find Full Text PDFBone modeling is the central system controlling the formation of bone including bone growth and shape in early development, in which bone is continuously resorbed by osteoclasts and formed by osteoblasts. However, this system has not been well documented, because it is difficult to trace osteoclasts and osteoblasts in vivo during development. Here we showed the important role of osteoclasts in organogenesis by establishing osteoclast-specific transgenic medaka lines and by using a zebrafish osteoclast-deficient line.
View Article and Find Full Text PDFMineralization of circumpulpal dentin has been interpreted in such a way that predentin matrix is abruptly converted to almost fully mineralized dentin at the mineralization front. A group of investigators pointed out the existence of intermediary layer along the mineralization front of rat incisor dentin and claimed that dentin mineralization is a rather transient process. Owing to a paucity of information, however, the entity of transient mineralization of dentin has remained elusive.
View Article and Find Full Text PDFMature enamel consists of densely packed and highly organized large hydroxyapatite crystals. The molecular machinery responsible for the formation of fully matured enamel is poorly described but appears to involve oscillative pH changes at the enamel surface. We conducted an immunohistochemical investigation of selected transporters and related proteins in the multilayered rat incisor enamel organ.
View Article and Find Full Text PDFThe floor plate is a key organizer that controls the specification of neurons in the central nervous system. Here, we show a new role of the floor plate: segmental pattern formation of the vertebral column. Analysis of a spontaneous medaka mutant, fused centrum (fsc), which exhibits fused centra and the absence of the intervertebral ligaments, revealed that fsc encodes wnt4b, which was expressed exclusively in the floor plate.
View Article and Find Full Text PDFWe characterized a medaka mutant, vertebra imperfecta (vbi), that displays skeletal defects such as craniofacial malformation and delay of vertebra formation. Positional cloning analysis revealed a nonsense mutation in sec24d encoding a component of the COPII coat that plays a role in anterograde protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Immunofluorescence analysis revealed the accumulation of type II collagen in the cytoplasm of craniofacial chondrocytes, notochord cells, and the cells on the myoseptal boundary in vbi mutants.
View Article and Find Full Text PDFCement lines represent mineralized, extracellular matrix interfacial boundaries at which bone resorption by osteoclasts is followed by bone deposition by osteoblasts. To determine the contribution of cement lines to bone quality, the osteopetrotic c-Src mouse model-where cement lines accumulate and persist as a result of defective osteoclastic resorption-was used to investigate age-related changes in structural and mechanical properties of bone having long-lasting cement lines. Cement lines of osteopetrotic bones in c-Src knockout mice progressively mineralized with age up to the level that the entire matrix of cement lines was lost by EDTA decalcification.
View Article and Find Full Text PDFEctodermal contribution to the induction of pharyngeal teeth that form in the endodermal territory of the oropharyngeal cavity in some teleost fishes has been a matter of considerable debate. To determine the role of ectodermal cell signaling in scale and tooth formation and thereby to gain insights in evolutionary origin of teeth, we analyzed scales and teeth in rs-3 medaka mutants characterized by reduced scale numbers due to aberrant splicing of the ectodysplasin-A receptor (edar). Current data show that, in addition to a loss of scales (83% reduction), a drastic loss of teeth occurred in both oral (43.
View Article and Find Full Text PDFTissue-nonspecific alkaline phosphatase (TNSALP) and Ca-ATPase are known to play roles in bone mineralization, but how these enzymes contribute to appositional mineralization has been illusive. Here we examined the active sites of these enzymes in appositional mineralization using the bones of young rats being administered with 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) for 5 days. The doses of HEBP totally abolished mineralization of newly formed bone matrix except in matrix vesicles (MVs), and hence allowed precise localization of MVs and phosphatase reactions within non-mineralized extracellular matrix.
View Article and Find Full Text PDFThe enamel organ engaged in enamel matrix formation in tooth germs comprises four different cell types: the ameloblasts, the cells of the stratum intermedium, stellate reticulum, and the outer enamel epithelium, each characterized by distinct structural features. In ordinary primary cultures of tooth-derived cells, these cells generally become flat in profile and hardly regain their original profiles comparable to those in vivo, even under conditions that can induce the expression of functional markers from these cells. To overcome this limitation inherent to the cell culture of tooth-derived cells, we introduced a novel co-culture method, a "three-dimensional and layered (TDL) culture", a three-dimensional (3D) culture of dental pulp-derived cells dispersed in type I collagen gel combined with a layered culture of enamel epithelial cells seeded on top of the gel to establish thereby a culture condition where the functional tooth-derived cells regain their original structures and spatial arrangements.
View Article and Find Full Text PDFEctopic tooth transplants are known to receive rich innervation of local neurons, but the precise location and structural features of neurites in the pulp and periodontal ligament (PDL) of such transplants are unclear. In this experiment, the molar tooth germs of rat embryos and incisors of young rats were subcutaneously transplanted into the dorsal regions of rats and processed, at various time intervals, for immunohistochemical demonstration of neural elements. Teeth with periodontal tissue elements developed in most of the molar transplants in 6 or 8 wk and received rich innervation, including some autonomic fibres, in the pulp.
View Article and Find Full Text PDFObjective: Previous studies indicate that hypertrophic chondrocytes can transdifferentiate or dedifferentiate and redifferentiate into bone cells during the endochondral bone formation. Mandibular condyle in aged c-src-deficient mice has incremental line-like striations consisting of cartilaginous and non-cartilaginous layers, and the former contains intact hypertrophic chondrocytes in uneroded lacunae. The purpose of this study is to determine the phenotype changes of uneroded hypertrophic chondrocytes.
View Article and Find Full Text PDFThe vertebral column is a defined feature of vertebrates. In birds and mammals, the sclerotome yields cartilaginous material for the vertebral column. In teleosts, however, it remains uncertain whether the sclerotome participates in vertebral column formation.
View Article and Find Full Text PDFC-src deficiency is characterized by osteopetrosis due to impaired bone resorption by hypofunctional osteoclasts and the resultant failure of tooth eruption. In preliminary observations, we frequently encountered erupted molars in c-src deficient mice unlike in other osteopetrotic animals. Here we examine the effects of c-src deficiency on the development of molar teeth with an emphasis on the spatial relation of growing teeth with the surrounding bones.
View Article and Find Full Text PDFSome researchers have speculated that a decrease in bone type 1 PTH receptor (PTH1R) may be among the causes of "skeletal resistance" in chronic renal failure (CRF). Indeed, the down-regulation of PTH1R mRNA has been identified in uremic bones. However, few studies have identified the patterns of PTH1R protein expression.
View Article and Find Full Text PDF