Biochem Biophys Res Commun
June 2003
Serum stimulation leads to activation of the serum response factor (SRF)-mediated transcription of immediate-early genes such as c-fos via various signal transduction pathways. We have previously reported that promyelocytic leukemia protein (PML) is involved in the transcriptional regulation by SRF. PML is one of the well-known substrates for modification by small ubiquitin-related modifier-1 (SUMO-1) and several SUMO-1-modified proteins associate with PML.
View Article and Find Full Text PDFBackground: Serum stimulation leads to the activation of various signal transduction pathways in cells, and the resultant signals are integrated into the serum response factor (SRF)-dependent transcription of immediate-early genes such as c-fos.
Results: To further characterize this response, we investigated the mechanism which controls serum response transcription in cultured human cells. Frequency of PML (promyelocytic leukaemia)-nuclear bodies (NBs) formation increases shortly after serum stimulation, probably facilitating the interaction of SRF and CBP acetyltransferase at the NBs.
The aryl hydrocarbon receptor nuclear transporter (ARNT) is a member of the basic helix-loop-helix/PAS (Per-ARNT-Sim) family of transcription factors, which are important for cell regulation in response to environmental conditions. ARNT is an indispensable partner of the aryl hydrocarbon receptor (AHR) or hypoxia-inducible factor-1alpha. This protein is also able to form homodimers such as ARNT/ARNT.
View Article and Find Full Text PDFUbiquitin ligases define the substrate specificity of protein ubiquitination and subsequent proteosomal degradation. The catalytic sequence was first characterized in the C terminus of E6-associated protein (E6AP) and referred to as the HECT (homologous to E6AP C terminus) domain. The human homologue of the regulator of cell proliferation hyperplastic discs in Drosophila, designated hHYD, is a HECT-domain ubiquitin ligase.
View Article and Find Full Text PDF