This study investigates the forces exerted on organs during swallowing, specifically focusing on identifying forces other than those resulting from direct organ contact. Using a swallowing simulator based on the moving particle method, we simulated the swallowing process of healthy individuals upon the ingestion of thickened foods, which were simulated as shear-thinning flow without yield stress. We extracted the resultant force vectors acting on the organs and shape of the bolus at each time interval.
View Article and Find Full Text PDFObjective: To develop a new method of evaluating swallowing behaviour.
Methods: Sixty-nine healthy participants were divided into a younger (16 males and 16 females, mean age 39.09 ± 12.
During mastication, food undergoes state and texture changes influenced by various mechanical properties, including compression and fracturing of the molar teeth, mixing with saliva, and oral temperature. Prior studies have explored mastication simulators, however, no studies have assessed the forces and duration applied to the molars by the food during bolus formation. In this study, we developed a novel system that integrates a masticatory simulator and analysis method to evaluate mechanical properties.
View Article and Find Full Text PDFThe mechanism of swallowing is still not fully understood, because the process of swallowing is a rapid and complex interaction among several involved organs and the food bolus. In this work, with the aim of studying swallowing and aspiration processes noninvasively and systematically, a computer simulation method for analyzing the involved organs and water (considered as the food bolus) is proposed. The shape and motion of the organs involved in swallowing are modeled in the same way as in our previous study, by using the Hamiltonian moving particle simulation (MPS) method and forced displacements on the basis of motion in a healthy volunteer.
View Article and Find Full Text PDFThe aim of the present study was to evaluate the possibility of numerical simulation of the swallowing process using a moving particle simulation (MPS) method, which defined the food bolus as a number of particles in a fluid, a solid, and an elastic body. In order to verify the accuracy of the simulation results, a simple water bolus falling model was solved using the three-dimensional (3D) MPS method. We also examined the simplified swallowing simulation using a two-dimensional (2D) MPS method to confirm the interactions between the liquid, solid, elastic bolus, and organ structure.
View Article and Find Full Text PDFThe oral cavity contains almost half of the commensal bacterial population present in the human body. An increase in the number of these microorganisms may result in systemic diseases such as infective endocarditis and aspiration pneumonia as well as oral infections. It is essential to control the total numbers of these microorganisms in order to suppress disease onset.
View Article and Find Full Text PDF