Understanding the pressure-induced structural changes in liquids and amorphous materials is fundamental in a wide range of scientific fields. However, experimental investigation of the structure of liquid and amorphous material under in situ high-pressure conditions is still limited due to the experimental difficulties. In particular, the range of the momentum transfer (Q) in the structure factor [S(Q)] measurement under high-pressure conditions has been limited at relatively low Q, which makes it difficult to conduct detailed structural analysis of liquid and amorphous material.
View Article and Find Full Text PDFWhile polymorphism is prevalent in crystalline solids, polyamorphism draws increasing interest in various types of amorphous solids. Recent studies suggested that supercooling of liquid phase-change materials (PCMs) induces Peierls-like distortions in their local structures, underlying their liquid-liquid transitions before vitrification. However, the mechanism of how the vitrified phases undergo a possible polyamorphic transition remains elusive.
View Article and Find Full Text PDFOff-fault damage or pulverized rocks found in large-scale strike-slip faults are of great interest in earthquake research. In order to experimentally investigate rock pulverization, we developed a split Hopkinson pressure bar with compact dimensions and high-speed imaging. The developed experimental setup is capable of generating very high strain rates up to 1320 s-1 with the satisfaction of stress equilibrium, which are essential to reproduce the dynamic pulverization observed in nature and obtain dynamic stress-strain responses accurately.
View Article and Find Full Text PDFVolcanic eruptions are shallow phenomena that represent the final stage of density- and viscosity- driven processes of melt migration from source rocks at upper mantle depths. In this experimental study, we investigated the effect of pressure (0.7-7.
View Article and Find Full Text PDFPair distribution function measurement of SiO_{2} glass up to 120 GPa reveals changes in the first-, second-, and third-neighbor distances associated with an increase in Si coordination number C_{Si} to >6 above 95 GPa. Packing fractions of Si and O determined from the first- and second-neighbor distances show marked changes accompanied with the structural evolution from C_{Si}=6 to >6. Structural constraints in terms of ionic radius ratio of Si and O, and ratio of nonbonded radius to bonded Si─O distance support the structural evolution of SiO_{2} glass with C_{Si}>6 at high pressures.
View Article and Find Full Text PDFA broadband wavelet approach to ultrasonic pulse-echo time-of-flight measurements is described. The broadband approach significantly reduces the time required for frequency-dependent pulse-echo measurements, enabling studies of dynamic systems ranging from biological systems to solid-state phase transitions. The described broadband approach is demonstrated in parallel with the more traditional frequency stepping approach to perform ultrasound time-of-flight measurements inside a large volume Paris-Edinburgh press in situ at a synchrotron source.
View Article and Find Full Text PDFWe have experimentally studied the effect of compression on the structure of liquid lithium (Li) by multiangle energy dispersive X-ray diffraction in a large-volume cupped-Drickamer-Toroidal cell. The structure factors, (), of liquid Li have been successfully determined under an isothermal compression at 600 ± 30 K and at pressures up to 11.5 GPa.
View Article and Find Full Text PDFKnowledge of the structure in amorphous dioxides is important in many fields of science and engineering. Here we report new experimental results of high-pressure polyamorphism in amorphous TiO (a-TiO). Our data show that the Ti coordination number (CN) increases from 7.
View Article and Find Full Text PDFCarbonate liquids are an important class of molten salts, not just for industrial applications, but also in geological processes. Carbonates are generally expected to be simple liquids, in terms of ionic interactions between the molecular carbonate anions and metal cations, and therefore relatively structureless compared to more "polymerized" silicate melts. But there is increasing evidence from phase relations, metal solubility, glass spectroscopy and simulations to suggest the emergence of carbonate "networks" at length scales longer than the component molecular anions.
View Article and Find Full Text PDFAmorphous diamond, formed by high-pressure compression of glassy carbon, is of interests for new carbon materials with unique properties such as high compressive strength. Previous studies attributed the ultrahigh strength of the compressed glassy carbon to structural transformation from graphite-like sp-bonded structure to diamond-like sp-bonded structure. However, there is no direct experimental determination of the bond structure of the compressed glassy carbon, because of experimental challenges.
View Article and Find Full Text PDFCalcium carbonate (CaCO) significantly affects the properties of upper mantle and plays a key role in deep carbon recycling. However, its phase relations above 3 GPa and 1000 K are controversial. Here we report a reversible temperature-induced aragonite-amorphization transition in CaCO at 3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2018
Knowledge of the structure and properties of silicate magma under extreme pressure plays an important role in understanding the nature and evolution of Earth's deep interior. Here we report the structure of MgSiO glass, considered an analog of silicate melts, up to 111 GPa. The first (r1) and second (r2) neighbor distances in the pair distribution function change rapidly, with r1 increasing and r2 decreasing with pressure.
View Article and Find Full Text PDFPressure induced densification and compression of a reprocessed sample of borosilicate glass has been studied by X-ray radiography and energy dispersive X-ray diffraction using a Paris-Edinburgh (PE) press at a synchrotron X-ray source. The reprocessing of a commercial borosilicate glass was carried out by cyclical melting and cooling. Gold foil pressure markers were used to obtain the sample pressure by X-ray diffraction using its known equation of state, while X-ray radiography provided a direct measure of the sample volume at high pressure.
View Article and Find Full Text PDFCarbon's unique ability to have both sp and sp bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2017
As an archetypal semimetal with complex and anisotropic Fermi surface and unusual electric properties (e.g., high electrical resistance, large magnetoresistance, and giant Hall effect), bismuth (Bi) has played a critical role in metal physics.
View Article and Find Full Text PDFA metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2016
Knowledge of pressure-induced structural changes in glasses is important in various scientific fields as well as in engineering and industry. However, polyamorphism in glasses under high pressure remains poorly understood because of experimental challenges. Here we report new experimental findings of ultrahigh-pressure polyamorphism in GeO2 glass, investigated using a newly developed double-stage large-volume cell.
View Article and Find Full Text PDFMetallic glass (MG) is an important new category of materials, but very few rigorous laws are currently known for defining its "disordered" structure. Recently we found that under compression, the volume (V) of an MG changes precisely to the 2.5 power of its principal diffraction peak position (1/q1).
View Article and Find Full Text PDFSeveral X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts.
View Article and Find Full Text PDFType-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains.
View Article and Find Full Text PDFKnowledge of the occurrence and mobility of carbonate-rich melts in the Earth's mantle is important for understanding the deep carbon cycle and related geochemical and geophysical processes. However, our understanding of the mobility of carbonate-rich melts remains poor. Here we report viscosities of carbonate melts up to 6.
View Article and Find Full Text PDFAs a fundamental property of a material, density is controlled by the interatomic distances and the packing of microscopic constituents. The most prominent atomistic feature in a metallic glass (MG) that can be measured is its principal diffraction peak position (q1) observable by x-ray, electron, or neutron diffraction, which is closely associated with the average interatomic distance in the first shell. Density (and volume) would naturally be expected to vary under compression in proportion to the cube of the one-dimensional interatomic distance.
View Article and Find Full Text PDFA defining characteristic of silicate melts is the degree of polymerization (tetrahedral connectivity), which dictates viscosity and affects compressibility. While viscosity of depolymerized silicate melts increases with pressure consistent with the free-volume theory, isothermal viscosity of polymerized melts decreases with pressure up to ~3-5 GPa, above which it turns over to normal (positive) pressure dependence. Here we show that the viscosity turnover in polymerized liquids corresponds to the tetrahedral packing limit, below which the structure is compressed through tightening of the inter-tetrahedral bond angle, resulting in high compressibility, continual breakup of tetrahedral connectivity and viscosity decrease with increasing pressure.
View Article and Find Full Text PDFAn integration of multi-angle energy-dispersive x-ray diffraction and ultrasonic elastic wave velocity measurements in a Paris-Edinburgh cell enabled us to simultaneously investigate the structures and elastic wave velocities of amorphous materials at high pressure and high temperature conditions. We report the first simultaneous structure and elastic wave velocity measurement for SiO(2) glass at pressures up to 6.8 GPa at around 500°C.
View Article and Find Full Text PDF