Epigenetic modifications, including DNA methylation, are involved in the regulatory mechanisms of gene expression in animals and plants. In this study, we investigated whether the action of 5-azacytidine (5-aza-Cd), which is a well-known DNA methylation inhibitor, in suspension-cultured tobacco cells is affected by treatment with nucleoside derivatives of 5-methylcytosine (5-mCs), namely 5-methylcytidine (5-mCd) and 5-methyl-2'-deoxycytidine (5-mdCd). In a tobacco cell line, 5-aza-Cd treatment reactivated an epigenetically silenced transgene containing the cauliflower mosaic virus 35S promoter fused to the β-glucuronidase coding region and the nopaline synthase polyadenylation signal.
View Article and Find Full Text PDF