The amino-acid sequence of a protein encodes information on its three-dimensional structure and specific functionality. De novo design has emerged as a method to manipulate the primary structure for the development of artificial proteins and peptides with desired functionality. This paper describes the de novo design of a pore-forming peptide, named SV28, that has a β-hairpin structure and assembles to form a stable nanopore in a bilayer lipid membrane.
View Article and Find Full Text PDFThe biological process of skin sensitization depends on the ability of a sensitizer to modify endogenous proteins. A direct peptide reactivity assay (DPRA), based on the biological process of skin sensitization, was developed as an alternative to controversial animal experiments. Although DPRA has been endorsed by industries and is internationally accepted as promising, it has several drawbacks, such as incompatibility with hydrophobic chemicals, inability to perform detailed reaction analysis, and ability to evaluate only single components.
View Article and Find Full Text PDFWe developed an in vitro chromophore-solid phase peptide reaction assay (C-SPRA) using microbead-immobilized peptides and chromophores. Peptide-resins (microbeads) reacted with 14 representative chemicals to demonstrate the test's capacity to predict skin sensitization. C-SPRA enables accurate and high-throughput assessments of various chemicals, including poorly water-soluble sensitizers that are regarded as weakly potent by other methods.
View Article and Find Full Text PDFThe biomolecular system mainly consists of nucleic acids, proteins, peptides, and sugar chains, and they play a critical role in cell growth, differentiation induction, apoptosis, and immunity. Among these components, peptides are the most commonly studied due to their relatively low molecular weight and high biocompatibility as well as in vitro and in vivo lability and often applied as drugs, agricultural chemicals, food, and tools in diagnostic and biological research. Peptidomimetics have been reported to function as protein-protein interaction inhibitors and thus could serve in many biomolecular systems.
View Article and Find Full Text PDFProtein Pept Lett
February 2019
Background: Peptides are promising compounds for use in inorganic or organic-inorganic hybrid syntheses (mineralization) and offer several advantages over proteins. Meanwhile, silica-based nanomaterials have been extensively investigated for many years because of their potential application in a diverse range of technologies, including catalysis, sensing, separation, enzyme immobilization, and gene and drug delivery. Considerable progress has been made over the past decade in understanding the molecular mechanisms underpinning biosilicification and the biomimetic synthesis of patterned nanosilica using peptides.
View Article and Find Full Text PDFThe development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2017
The development of prodrugs has progressed with the aim of improving drug bioavailability by overcoming various barriers that reduce drug benefits in clinical use, such as stability, duration, water solubility, side effect profile, and taste. Many conventional drugs act as the precursors of an active agent in vivo; for example, the anti-HIV agent azidothymidine (AZT) is converted into its corresponding active triphosphate ester in the body, meaning that AZT is a prodrug in the broadest sense. However prodrug design is generally difficult owing to the lack of general versatility.
View Article and Find Full Text PDFWe have developed a site-specific method for precipitating multiple inorganic compounds using target DNA and a designed peptide consisting of a peptide nucleic acid (PNA) sequence and an inorganic compound-precipitating sequence. This system for controlled site-specific precipitation represents a powerful tool for use in nanobiotechnology and materials science.
View Article and Find Full Text PDFWater-soluble prodrug strategy is a practical alternative for improving the drug bioavailability of sparingly-soluble drugs with reduced drug efficacy. Many water-soluble prodrugs of sparingly-soluble drugs, such as the phosphate ester of a drug, have been reported. Recently, we described a novel water-soluble prodrug based on O-N intramolecular acyl migration.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2016
The cleavage of amide bonds requires considerable energy. It is difficult to cleave the amide bonds in peptides at room temperature, whereas ester bonds are cleaved easily. If peptide bonds can be selectively cleaved at room temperature, it will become a powerful tool for life science research, peptide prodrug, and tissue-targeting drug delivery systems.
View Article and Find Full Text PDFProteases play crucial roles in various biological processes, and their activities are essential for all living organisms-from viruses to humans. Since their functions are closely associated with many pathogenic mechanisms, their inhibitors or activators are important molecular targets for developing treatments for various diseases. Here, we describe drugs/drug candidates that target proteases, such as malarial plasmepsins, β-secretase, virus proteases, and dipeptidyl peptidase-4.
View Article and Find Full Text PDFAmyloid β peptide, the main component of senile plaques found in the brain of Alzheimer disease (AD) patients, is a molecular target for AD therapeutic intervention. A number of potential AD therapeutics have been reported, including inhibitors of β-secretase, γ-secretase, and Aβ aggregation, and anti-amyloid agents, such as neprilysin, insulin degrading enzyme (IDE), and Aβ antibodies. Recently, we reported potent small-sized β-secretase (BACE1) inhibitors, which could serve as anti-AD drugs.
View Article and Find Full Text PDFWe have previously reported potent substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. While these inhibitors exhibited potent activities in enzymatic and cellular assays (KMI-429 in particular inhibited Aβ production in vivo), these inhibitors contained some natural amino acids that seemed to be required to improve enzymatic stability in vivo and permeability across the blood-brain barrier, so as to be practical drug. Recently, we synthesized non-peptidic and small-sized BACE1 inhibitors possessing a heterocyclic scaffold at the P2 position.
View Article and Find Full Text PDFBioorg Med Chem
November 2013
We have reported potent peptidic and non-peptidic BACE1 inhibitors with a hydroxymethylcarbonyl (HMC) isostere as a substrate transition-state mimic. However, our potent inhibitors possess a tetrazole ring at the P1' position. It is desirable that central nervous system (CNS) drugs do not possess an acidic moiety.
View Article and Find Full Text PDFTLE3 is a transcriptional co-repressor that interacts with several DNA-binding repressors, including downstream effectors of the Notch signaling pathway. We generated Tle3-deficient mice and found that they die in utero and their death is associated with abnormal development of the placenta with major defects in the maternal vasculature. In the normal placenta, maternal blood spaces are lined, not as usual in the mammalian circulation by endothelial cells, but rather by specialized embryo-derived cells of the trophoblast cell lineage named trophoblast giant cells (TGC).
View Article and Find Full Text PDFThis review discusses the importance of quantum chemical interactions in biomolecules for medicinal science and their relevance to the author's β-secretase (BACE1) inhibitor drug discovery research. Although molecular mechanics/dynamics (MM/MD) methods are available in many in silico design tools used for drug discovery, they cannot accurately evaluate quantum effects between biomolecules and drugs. The key roles of biomolecular quantum chemical interactions in drug discovery are discussed using the arginine side chain as an example.
View Article and Find Full Text PDFIntroduction: Alzheimer's disease (AD), which is characterized by progressive intellectual deterioration, is the most common cause of dementia. β-Secretase (or BACE1) expression is a trigger for amyloid β peptide formation, a cause of AD, and thus is a molecular target for the development of drugs against AD. Many BACE1 inhibitors have been identified by academic and pharmaceutical research groups and a number of advanced technologies in drug discovery have been applied to the drug discovery.
View Article and Find Full Text PDFExpert Opin Drug Discov
October 2012
Introduction: A bioisostere is a powerful concept for medicinal chemistry. It allows the improvement of the stability; oral absorption; membrane permeability; and absorption, distribution, metabolism and excretion (ADME) of drug candidate, while retaining their biological properties. The term 'bioisostere' is derived from 'isostere', whose physical and chemical properties, such as steric size, hydrophobicity, and electronegativity, are similar to those of a functional or atomic group, and is considered to possess biological properties.
View Article and Find Full Text PDFRecently, we reported substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent inhibitory activities in enzymatic and cell assays. We also designed and synthesized non-peptidic and small-sized inhibitors possessing a heterocyclic scaffold at the P(2) position.
View Article and Find Full Text PDFRecently, we reported substrate-based pentapeptidic β-secretase (BACE1) inhibitors with a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent BACE1 inhibitory activity in enzyme and cell assays, with KMI-429 showing in vivo inhibition of Aβ production. We also designed and synthesized nonpeptidic and small-sized BACE1 inhibitors using "in-silico conformational structure-based design".
View Article and Find Full Text PDFPreviously reported pentapeptidic BACE1 inhibitors, designed using a substrate-based approach, were used as lead compounds for the further design of non-peptidic BACE1 inhibitors. Although these peptidic and non-peptidic inhibitors, with a hydroxymethylcarbonyl isostere as a substrate transition-state mimic, exhibited potent BACE1 inhibitory activities, their molecular-sizes appeared a little too big (molecular weight of >600daltons) for developing practical anti-Alzheimer's disease drugs. To develop lower weight BACE1 inhibitors, a series of tripeptidic BACE1 inhibitors were devised using a design approach based on the conformation of a virtual inhibitor bound to the BACE1 active site, also called 'in-silico conformational structure-based design'.
View Article and Find Full Text PDFPreviously, we reported potent pentapeptidic BACE1 inhibitors with the hydroxymethylcarbonyl isostere as a substrate transition-state mimic. To improve the in vitro potency, we further reported pentapeptidic inhibitors with carboxylic acid bioisosteres at the P(4) and P1' positions. In the current study, we screened new P1' position 1-phenylcycloalkylamine analogs to find non-acidic inhibitors that possess double-digit nanomolar range IC(50) values.
View Article and Find Full Text PDFBeta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is known to be involved in the production of amyloid beta-peptide in Alzheimer's disease and is a major target for current drug design. We previously reported substrate-based peptidomimetics, KMI-compounds as potent BACE1 inhibitors. In this study, we designed and synthesized tetrapeptides as low molecular-sized inhibitors.
View Article and Find Full Text PDFWe previously reported potent BACE1 inhibitors KMI-420 and KMI-570 possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. Acidic moieties at the P(1)(') and P(4) positions of KMI inhibitors are thought to be unfavorable in terms of membrane permeability across the blood-brain barrier. Herein, we replaced acidic moieties at the P(4) position with hydrogen bond accepting groups and acidic moieties at the P(1)(') position with less acidic and similar molecular-size moieties (carboxylic acid or tetrazole bioisosteres).
View Article and Find Full Text PDF