CPT Pharmacometrics Syst Pharmacol
October 2020
To test the functional consequences of blocking the local renin-angiotensin system (RAS), we investigated the effects of an angiotensin II type 1 receptor blocker (ARB), candesartan, on the systemic gene expression profile of five important organs (brain, heart, kidney, liver and adipose tissues) in the stroke-prone spontaneously hypertensive rat (SHRSP), an established model of essential hypertension and cardiovascular disorders, and its normotensive control, the Wistar Kyoto (WKY) rat. Rats were treated with candesartan (5 mg/kg/d) for 4 weeks from 12 to 16 weeks of age. DNA microarray technology was used to identify changes in gene expression.
View Article and Find Full Text PDFTo address the multiplicity of the renin-angiotensin system (RAS) with particular interest in its local, synergistic regulation, we investigate dynamic changes of the RAS and associated systems in response to external stimuli in the rat. We tested influences of the RAS blockade (candesartan and enalapril), diuretics (hydrochlorothiazide), high lipid diet, and salt loading on tissue mRNA level of 12 principal genes. Under the hemodynamic conditions appropriately predetermined, we quantitatively evaluated mRNA level changes with and without each intervention in five organs-the brain, heart, kidney, liver, and adipose tissues-of male rats (n = 5 each).
View Article and Find Full Text PDFStatins have been reported to protect against end-organ damage in essential hypertension; however, detailed mechanisms underlying organ-protective actions of statins remain unclear. Statins can exert pleiotropic effects aside from lowering cholesterol and blood pressure levels through several different pathways, which may lead to distinct patterns of changes in gene expression in vital end-organs. The aim of the present study was to systemically evaluate gene expression changes in three major end-organs (the brain, heart and kidney) induced by atorvastatin at a dose that altered neither blood pressure nor plasma total cholesterol levels.
View Article and Find Full Text PDFThe substrate selectivity of monoamine oxidase A (MAO-A), monoamine oxidase B (MAO-B), diamine oxidase (DAO), and semicarbazide-sensitive amine oxidase (SSAO) was investigated in the absence of chemical inhibitors using the COS-1 cells expressed with respective amine oxidase. Serotonin (5-hydroxytryptamine), 1-methylhistamine, and histamine were preferentially oxidized by MAO-A, SSAO, and DAO, respectively, at a low substrate concentration. In contrast, benzylamine, tyramine, and beta-phenylethylamine served as substrates for all of MAO-A, MAO-B, and SSAO.
View Article and Find Full Text PDFThe aim of this study was to examine whether cultured rat lung microvascular endothelial cells (LMECs), which constitute the gas-blood barrier, have the ability to metabolize nicotine. Nicotine was biotransformed to cotinine and nicotine N'-oxide by cytochrome 450 (CYP) and flavin-containing monooxyganase (FMO), respectively, in rat LMECs. The intrinsic clearance (Vmax1/Km1) for the cotinine formation was about 20 times as high as that for the trans-nicotine N'-oxide formation in the low-Km phase, indicating that oxidation by CYP was much higher than that by FMO.
View Article and Find Full Text PDFSynchrotron radiation imaging with the refraction-enhancement mode visualized structural inhomogeneities in phantoms used for image quality control of mammography. Eight phantoms were examined, all of which were manufactured in the United States and approved by the American College of Radiology as dedicated phantoms. In addition to fiber- and mass-mimicking test objects, each phantom has 5 groups of calcification specks of various sizes.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2002