Publications by authors named "Yoshinobu Goto"

Article Synopsis
  • This study examined how dividing attention affects movement-related cortical potential (MRCP) in elderly individuals performing dual tasks.
  • Eleven participants completed a tapping task alone and then while also counting numbers, with the complexity of the counting task varied.
  • The results showed that greater attention diversion (more complex dual task) led to increased variability in movement and higher MRCP amplitudes, indicating the importance of attention in preparing and executing movements in older adults.
View Article and Find Full Text PDF

Background: Skin injuries and joint contractures in the upper limbs are observed in approximately 50 % of individuals with Rett syndrome, respectively.

Aims: To investigate the relationship between stereotypic hand movements and purposeful hand skills, items related to these, and factors that cause upper extremity skin injuries and joint contractures in individuals with Rett syndrome.

Study Design: We conducted a cross-sectional observational study in 2020 with families belonging to either of the two largest Rett syndrome organizations in Japan.

View Article and Find Full Text PDF

Objective: Cathodal transcranial direct current stimulation (C-tDCS) is generally assumed to inhibit cortical excitability. The parietal cortex contributes to multisensory information processing in the postural control system, and this processing is proposed to be different between the right and left hemispheres and sensory modality. However, previous studies did not clarify whether the effects of unilateral C-tDCS of the parietal cortex on the postural control system differ depending on the hemisphere.

View Article and Find Full Text PDF

The mismatch response (MMR) is thought to be a neurophysiological measure of novel auditory detection that could serve as a translational biomarker of various neurological diseases. When recorded with electroencephalography (EEG) or magnetoencephalography (MEG), the MMR is traditionally extracted by subtracting the event-related potential/field (ERP/ERF) elicited in response to "deviant" sounds that occur randomly within a train of repetitive "standard" sounds. However, there are several problems with such a subtraction, which include increased noise and the neural adaptation problem.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects on prefrontal cortex brain activity when participants attempted to stop a car accurately at a stop line when driving at different speeds using functional near-infrared spectroscopy (fNIRS). Twenty healthy subjects with driving experience drove their own cars for a distance of 60 m five times each at their own pace or as fast as possible. The variation in the distance between the stop line and the car was not significantly different between the self-paced and high-speed tasks.

View Article and Find Full Text PDF

Background: We investigated how many individuals with Rett syndrome were undergoing interventions to reduce stereotypic hand movements and the factors determining the presence or absence of an intervention.

Method: A questionnaire was sent to 194 families. Each survey item was compared between the intervention and non-intervention groups according to the presence or absence of interventions to reduce hand stereotypies.

View Article and Find Full Text PDF

The mismatch response (MMR) is thought to be a neurophysiological measure of novel auditory detection that could serve as a translational biomarker of various neurological diseases. When recorded with electroencephalography (EEG) or magnetoencephalography (MEG), the MMR is traditionally extracted by subtracting the event-related potential/field (ERP/ERF) elicited in response to "deviant" sounds that occur randomly within a train of repetitive "standard" sounds. To overcome the limitations of this subtraction procedure, we propose a novel method which we call weighted-BSS, which uses only the deviant response to derive the MMR.

View Article and Find Full Text PDF

Intermittent theta-burst stimulation (iTBS) using transcranial magnetic stimulation (TMS) is known to produce excitatory after-effects over the primary motor cortex (M1). Recently, transcranial alternating current stimulation (tACS) at 10 Hz (α) and 20 Hz (β) have been shown to modulate M1 excitability in a phase-dependent manner. Therefore, we hypothesized that tACS would modulate the after-effects of iTBS depending on the stimulation frequency and phase.

View Article and Find Full Text PDF

Patients with cortical reflex myoclonus manifest typical neurophysiologic characteristics due to primary sensorimotor cortex (S1/M1) hyperexcitability, namely, contralateral giant somatosensory-evoked potentials/fields and a C-reflex (CR) in the stimulated arm. Some patients show a CR in both arms in response to unilateral stimulation, with about 10-ms delay in the non-stimulated compared with the stimulated arm. This bilateral C-reflex (BCR) may reflect strong involvement of bilateral S1/M1.

View Article and Find Full Text PDF

[Purpose] The aim of this study was to investigate the effect of divided attention on motor-related cortical potential (MRCP) during dual task performance while the difficulty of the secondary task was altered. [Participants and Methods] Twenty-two right-handed healthy volunteers participated in the study. MRCPs were recorded during two tasks, a single task (ST) and a simple (S-DT) or complex dual task (C-DT).

View Article and Find Full Text PDF

'Time-shrinking perception (TSP)' is a unique perceptual phenomenon in which the duration of two successive intervals (T1 and T2) marked by three auditory stimuli is perceived as equal even when they are physically different. This phenomenon provides a link between time and working memory; however, previous studies have mainly been performed on the auditory modality but not the visual modality. To clarify the neural mechanism of visual TSP, we performed a psychophysical experiment and recorded event-related potentials (ERPs) under different T1/T2 combinations.

View Article and Find Full Text PDF

Visual dysfunctions are common in Alzheimer's disease (AD). Our aim was to establish a neurophysiological biomarker for amnestic mild cognitive impairment (aMCI). Visual evoked potentials (VEPs) were recorded in aMCI patients who later developed AD (n = 15) and in healthy older (n = 15) and younger controls (n = 15).

View Article and Find Full Text PDF

Proliferative vitreoretinopathy (PVR) is a severe, vision-threatening disorder characterized by the fibrous membrane formation that leads to tractional retinal detachment. There has been no effective therapeutic approach other than vitreoretinal surgery. In this study, DNA microarray analysis of the fibrous membranes revealed significant up-regulation of periostin.

View Article and Find Full Text PDF

Alzheimer's disease (AD) patients have visuospatial deficits due to parietal dorsal stream dysfunction. Two distinct dorsal flows have been proposed: the inferior parietal (ventro-dorsal (v-d)) and superior parietal (dorso-dorsal (d-d)) streams. We aimed to elucidate how the two dorsal streams are altered in patients with amnestic mild cognitive impairment (aMCI) and AD.

View Article and Find Full Text PDF

Lentiviral vectors are promising tools for the treatment of chronic retinal diseases including glaucoma, as they enable stable transgene expression. We examined whether simian immunodeficiency virus (SIV)-based lentiviral vector-mediated retinal gene transfer of human pigment epithelium-derived factor (hPEDF) can rescue rat retinal ganglion cell injury. Gene transfer was achieved through subretinal injection of an SIV vector expressing human PEDF (SIV-hPEDF) into the eyes of 4-week-old Wistar rats.

View Article and Find Full Text PDF

Objective: This study was performed to elucidate whether transcranial direct current stimulation (tDCS) over the motor association cortex modifies the excitability of primary motor (M1) and somatosensory (S1) cortices via neuronal connectivity.

Methods: Anodal, cathodal, and sham tDCS (1 mA) over the left motor association cortex was applied to 10 subjects for 15 min using electrodes of two sizes (9 and 18 cm(2)). Both motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs) were recorded before, immediately after, and 15 min after tDCS.

View Article and Find Full Text PDF

Objective: Event-related potentials (ERPs) were recorded to examine neural responses to face stimuli in a masking paradigm.

Methods: Images of faces (neutral or fearful) and objects were presented in subthreshold, threshold, and suprathreshold conditions (exposure durations of approximately 20, 30 and 300 ms, respectively), followed by a 1000-ms pattern mask. We recorded ERP responses at Oz, T5, T6, Cz and Pz.

View Article and Find Full Text PDF

At the nodes of Ranvier, excitable axon membranes are exposed directly to the extracellular fluid. Cations are accumulated and depleted in the local extracellular nodal region during action potential propagation, but the impact of the extranodal micromilieu on signal propagation still remains unclear. Brain-specific hyaluronan-binding link protein, Bral1, colocalizes and forms complexes with negatively charged extracellular matrix (ECM) proteins, such as versican V2 and brevican, at the nodes of Ranvier in the myelinated white matter.

View Article and Find Full Text PDF

In an axonal variant of Guillain-Barré syndrome (GBS) associated with Campylobacter jejuni (C. jejuni) enteritis, the mechanism underlying axonal damage is obscure. We purified and characterized a DNA-binding protein from starved cells derived from C.

View Article and Find Full Text PDF

A phase 1 clinical trial evaluating the safety of gene therapy for patients with wet age-related macular degeneration (AMD) or retinoblastoma has been completed without problems. The efficacy of gene therapy for Leber's congenital amaurosis (LCA) was reported by three groups. Gene therapy may thus hold promise as a therapeutic method for the treatment of intractable ocular diseases.

View Article and Find Full Text PDF

Cicatricial contraction of preretinal fibrous membrane is a cause of severe vision loss in proliferative vitreoretinal diseases such as proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). TGF-beta is overexpressed in the vitreous of patients with proliferative vitreoretinal diseases and is also detectable in the contractile membranes. Therefore, TGF-beta is presumed to contribute to the cicatricial contraction of the membranes, however, the underlying mechanisms and TGF-beta's importance among various other factors remain to be elucidated.

View Article and Find Full Text PDF

Background: We previously demonstrated that a new lentiviral vector derived from nonpathogenic simian immunodeficiency virus (SIVagm) was efficient and safe for long-lasting retinal gene transfer, and that it provided the significant therapeutic effect of expressing human pigment epithelium-derived factor (hPEDF) in Royal College of Surgeons (RCS) rats. In the present study, to obtain a more pronounced outcome, we assessed the potential synergistic effect of the simultaneous gene transfer of hPEDF and human fibroblast growth factor-2 (hFGF-2) by improved third-generation SIV on RCS rats and retinal degeneration slow (rds) mice, because the former targets the primary neurons, including photoreceptor cells (PCs), whereas the latter is effective for targeting secondary neural cells, including Muller cells.

Methods: Vector solution (SIV-hPEDF, SIV-hFGF-2, a 1 : 1 mixture of SIV-hPEDF and SIV-hFGF-2, or SIV-enhanced green fluorescent protein) was injected into the peripheral subretinal space of 3-week-old RCS rats or rds mice.

View Article and Find Full Text PDF

It is generally accepted that the N170 component of an event-related potential (ERP) reflects the structural encoding of faces and is specialized for face processing. Recent neuroimaging and ERP studies have demonstrated that spatial frequency is a crucial factor for face recognition. To clarify which early ERP components reflect either coarse (low spatial frequency, LSF) or fine (high spatial frequency, HSF) processing of faces, we recorded ERPs induced by manipulated face stimuli.

View Article and Find Full Text PDF

Objective: Despite tremendous progress in vitreoretinal surgery, certain postsurgical complications limit the success in the treatment of proliferative vitreoretinal diseases (PVDs), such as proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). One of the most significant complications is the cicatricial contraction of proliferative membranes, resulting in tractional retinal detachment and severe vision loss. Novel pharmaceutical approaches are thus urgently needed for the management of these vision-threatening diseases.

View Article and Find Full Text PDF

Purpose: To determine a psychophysiological basis for age visual sensitivity to chromatic and achromatic stimuli.

Methods: We investigated the effects of achromatic and four isoluminant color combinations (blue/red, blue/green, green/red, and blue/yellow), luminance ratio changes in color combinations (blue/red; 1:1, 3:4, 4:3) and contrast changes (3 to 100%) on steady-state electroretinograms (ERGs) and visual evoked potentials (VEPs) in 32 healthy teenagers and 30 young adults.

Results: We found that (1) dual peaks at 9 and 18 Hz with a dip at 12 Hz were observed in VEPs with all isoluminant color combinations, (2) VEP responses were significantly enhanced and the 12-Hz dip became unclear with luminance ratio changes between two colors with a nonantagonistic relationship (blue/red), and (3) VEP amplitudes were significantly increased when the contrast was increased.

View Article and Find Full Text PDF