Publications by authors named "Yoshimi Enose-Akahata"

Objectives: After acute coronavirus disease-2019 (COVID-19), people often experience fatigue, "brain fog," or other central neurologic symptoms (neuro-post-acute SARS-CoV2, or "Neuro-PASC"). In this observational study we evaluated whether abnormalities noted on initial evaluation persist after at least another year.

Methods: Neuro-PASC research participants who had undergone comprehensive inpatient testing at the NIH Clinical Center returned after at least 1 year for follow-up assessments including symptoms rating scales, MRI, lumbar puncture for tests of the CSF, physiologic recordings during the Valsalva maneuver and head-up tilting (with serial plasma catechols and cardiac Doppler ultrasound during the tilting), blood volume measurement, skin biopsies to examine sympathetic innervation, and blood sampling for neuroendocrine and immunologic measures.

View Article and Find Full Text PDF

Background And Objectives: Extracellular vesicles and particles (EVPs) are released from virtually all cell types, and may package many inflammatory factors and, in the case of infection, viral components. As such, EVPs can play not only a direct role in the development and progression of disease but can also be used as biomarkers. Here, we characterized immune signatures of EVPs from the cerebrospinal fluid (CSF) of individuals with HTLV-1-associated myelopathy (HAM), other chronic neurologic diseases, and healthy volunteers (HVs) to determine potential indicators of viral involvement and mechanisms of disease.

View Article and Find Full Text PDF

Human T lymphotropic virus type 1-assoicated (HTLV-1-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory disease caused by the persistent proliferation of HTLV-1-infected T cells. Here, we performed a T cell receptor (TCR) repertoire analysis focused on HTLV-1-infected cells to identify and track the infected T cell clones that are preserved in patients with HAM/TSP and migrate to the CNS. TCRβ repertoire analysis revealed higher clonal expansion in HTLV-1-infected cells compared with noninfected cells from patients with HAM/TSP and asymptomatic carriers (ACs).

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Although various viruses have been proposed to contribute to MS pathology, the etiology of MS remains unknown. Since intrathecal antibody synthesis is well documented in chronic viral infection and neuroinflammatory diseases, we hypothesized whether the patterns of antigen-specific antibody responses associated with various viral exposures may define patients with CNS chronic immune dysregulation.

View Article and Find Full Text PDF

Human T lymphotropic virus 1 (HTLV-1) is a human retrovirus identified as the causative agent in adult T-cell leukemia/lymphoma (ATL) and chronic-progressive neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 is estimated to infect between 5-20 million people worldwide, although most infected individuals remain asymptomatic. HTLV-1 infected persons carry an estimated lifetime risk of approximately 5% of developing ATL, and between 0.

View Article and Find Full Text PDF

Objective: Human T-cell lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive myelopathy. A high proviral load (PVL) is one of the main risk factors for HAM/TSP. Recently, it was shown that raltegravir could inhibit cell-free and cell-to-cell transmission of HTLV-1 in vitro.

View Article and Find Full Text PDF

Background: Progressive multifocal leukoencephalopathy, a rare disease of the CNS caused by JC virus and occurring in immunosuppressed people, is typically fatal unless adaptive immunity is restored. JC virus is a member of the human polyomavirus family and is closely related to the BK virus. We hypothesised that use of partly HLA-matched donor-derived BK virus-specific T cells for immunotherapy in progressive multifocal leukoencephalopathy would be feasible and safe.

View Article and Find Full Text PDF

Objective: To test the hypothesis that teriflunomide can reduce ex vivo spontaneous proliferation of peripheral blood mononuclear cells (PBMCs) from patients with human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP).

Methods: PBMCs from patients with HAM/TSP were cultured in the presence and absence of teriflunomide and assessed for cell viability, lymphocyte proliferation, activation markers, HTLV-1 and HTLV-1 messenger ribonucleic acid (mRNA) expression, and HTLV-1 Tax protein expression.

Results: In culture, teriflunomide did not affect cell viability.

View Article and Find Full Text PDF

In this study, we examined and characterized disease-specific TCR signatures in cerebrospinal fluid (CSF) of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). TCR β libraries using unique molecular identifier-based methodologies were sequenced in paired peripheral blood mononuclear cells (PBMCs) and CSF cells from HAM/TSP patients and normal healthy donors (NDs). The sequence analysis demonstrated that TCR β repertoires in CSF of HAM/TSP patients were highly expanded and contained both TCR clonotypes shared with PBMCs and uniquely enriched within the CSF.

View Article and Find Full Text PDF

BACKGROUNDCytotoxic T lymphocyte antigen 4 (CTLA4) is essential for immune homeostasis. Genetic mutations causing haploinsufficiency (CTLA4h) lead to a phenotypically heterogenous, immune-mediated disease that can include neuroinflammation. The neurological manifestations of CTLA4h are poorly characterized.

View Article and Find Full Text PDF

Human T cell lymphotropic virus 1 (HTLV-1) is a human retrovirus and infects approximately 10-20 million people worldwide. While the majority of infected people are asymptomatic carriers of HTLV-1, only 4% of infected people develop HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is a chronic, progressive, neurological disease which usually progresses slowly without remission, and is characterized by perivascular inflammatory infiltrates in chronic inflammatory lesions of the central nervous system (CNS), primarily affecting the spinal cord.

View Article and Find Full Text PDF

Objective: Human T cell lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive, neurological disease. Chronic activation of CD8 T cells, as evidenced by increased spontaneous lymphoproliferation and HTLV-1-specific cytotoxic T cells, has been demonstrated in HAM/TSP patients. Since IL-2 and IL-15 stimulate memory CD8 T cell activity, these cytokines have been implicated in the immunopathogenesis of HAM/TSP.

View Article and Find Full Text PDF

Background: Progressive multifocal leukoencephalopathy (PML) is an opportunistic brain infection that is caused by the JC virus and is typically fatal unless immune function can be restored. Programmed cell death protein 1 (PD-1) is a negative regulator of the immune response that may contribute to impaired viral clearance. Whether PD-1 blockade with pembrolizumab could reinvigorate anti-JC virus immune activity in patients with PML was unknown.

View Article and Find Full Text PDF

Background: HTLV-1 infects over 20 million people worldwide and causes a progressive neuroinflammatory disorder in a subset of infected individuals called HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The detection of HTLV-1 specific T cells in the cerebrospinal fluid (CSF) suggests this disease is immunopathologically mediated and that it may be driven by viral antigens. Exosomes are microvesicles originating from the endosomal compartment that are shed into the extracellular space by various cell types.

View Article and Find Full Text PDF

Intrathecal antibody synthesis is a well-documented phenomenon in infectious neurological diseases as well as in demyelinating diseases, but little is known about the role of B cells in the central nervous systems. We examined B cell and T cell immunophenotypes in CSF of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) compared to healthy normal donors and subjects with the other chronic virus infection and/or neuroinflammatory diseases including HIV infection, multiple sclerosis (MS) and progressive multifocal leukoencephalopathy. Antibody secreting B cells (ASCs) were elevated in HAM/TSP patients, which was significantly correlated with intrathecal HTLV-1-specific antibody responses.

View Article and Find Full Text PDF

Human T cell lymphotropic virus type 1 (HTLV-1) infection can lead to development of adult T cell leukemia/lymphoma (ATL) or HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a subset of infected subjects. Understanding the interaction between host and HTLV-1 and the molecular mechanisms associated with disease pathogenesis is critical for development efficient therapies. Two HTLV-1 genes, and (), have been demonstrated to play important roles in HTLV-1 infectivity and the growth and survival of leukemic cells.

View Article and Find Full Text PDF

Objective: Previous work measures spinal cord thinning in chronic progressive myelopathies, including human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and multiple sclerosis (MS). Quantitative measurements of spinal cord atrophy are important in fully characterizing these and other spinal cord diseases. We aimed to investigate patterns of spinal cord atrophy and correlations with clinical markers.

View Article and Find Full Text PDF

Pathology of HTLV-1 associated myelopathy/Tropical spastic paraparesis (HAM/TSP) is believed to be the result of "bystander damage" involving effector CD8 (+) T lymphocytes (CTLs) killing of virus infected cells. But the specific cellular events leading up to tissue injury are still unclear. Here, we developed the Microscopy Imaging of Cytotoxic T lymphocyte assay with Fluorescence emission (MI-CaFé), an optimized visualization analysis to explore the interactions between CTLs and virus infected or viral antigen presenting target cells.

View Article and Find Full Text PDF

Background: Virus transmission from various wild and domestic animals contributes to an increased risk of emerging infectious diseases in human populations. HTLV-1 is a human retrovirus associated with acute T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 originated from ancient zoonotic transmission from nonhuman primates, although cases of zoonotic infections continue to occur.

View Article and Find Full Text PDF

Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive inflammatory myelopathy occurring in a subset of HTLV-1-infected individuals. Despite advances in understanding its immunopathogenesis, an effective treatment remains to be found. IL-2 and IL-15, members of the gamma chain (γc) family of cytokines, are prominently deregulated in HAM/TSP and underlie many of the characteristic immune abnormalities, such as spontaneous lymphocyte proliferation (SP), increased STAT5 phosphorylation in the lymphocytes, and increased frequency and cytotoxicity of virus-specific cytotoxic CD8(+) T lymphocytes (CTLs).

View Article and Find Full Text PDF

HTLV-1 orf-I is linked to immune evasion, viral replication and persistence. Examining the orf-I sequence of 160 HTLV-1-infected individuals; we found polymorphism of orf-I that alters the relative amounts of p12 and its cleavage product p8. Three groups were identified on the basis of p12 and p8 expression: predominantly p12, predominantly p8 and balanced expression of p12 and p8.

View Article and Find Full Text PDF

HTLV-1 is a human retrovirus that is associated with the neuroinflammatory disorder HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). In these patients, HTLV-1 is primarily found in the CD4(+)CD25(+) T cell subset (Regulatory T cells:Tregs), which is responsible for peripheral immune tolerance and is known to be dysfunctional in HAM/TSP. Recent evidence suggests that FoxP3 expression and function is determined epigenetically through DNA demethylation in the Treg-specific demethylated region (TSDR).

View Article and Find Full Text PDF

Background: Human T cell lymphotropic virus type 1 (HTLV-1) infection can lead to development of adult T cell leukemia/lymphoma (ATL) or HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a subset of infected subjects. HTLV-1 basic leucine zipper factor (HBZ) gene has a critical role in HTLV-1 infectivity and the development of ATL and HAM/TSP. However, little is known about the immune response against HBZ in HTLV-1-infected individuals.

View Article and Find Full Text PDF