Publications by authors named "Yoshimi Aiyama"

In mouse testes, spermatogonial stem cells (SSCs), a subpopulation of GFRα1 (GDNF family receptor-α1)-positive spermatogonia, are widely distributed along the convoluted seminiferous tubules. The proliferation and differentiation of the SSCs are regulated in part by local expression of GDNF (glial cell-derived neurotorphic factor), one of major niche factors for SSCs. However, the in vivo dynamics of the GDNF-stimulated GFRα1-positive spermatogonia remains unclear.

View Article and Find Full Text PDF

In invertebrate species such as flies and nematodes, germline stem cells are maintained in a niche environment, which is restricted to the terminal end of the tubular structure in the gonads. In mice, spermatogonial stem cells (SSCs), a subpopulation of Asingle GFRα1 (glial cell line-derived neurotrophic factor [GDNF] family receptor-α1)-positive spermatogonia, are widely distributed along the longitudinal axis in the convoluted seminiferous tubules, preferentially juxtaposed to the interstitial vasculature. However, whether this area is the only SSC niche is not known.

View Article and Find Full Text PDF

Cell ablation technology is useful for studying specific cell lineages in a developing organ in vivo. Herein, we established a novel anti-Müllerian hormone (AMH)-toxin receptor-mediated cell knockout (Treck) mouse line, in which the diphtheria toxin (DT) receptor was specifically activated in Sertoli and granulosa cells in postnatal testes and ovaries respectively. In the postnatal testes of Amh-Treck transgenic (Tg) male mice, DT injection induced a specific loss of the Sertoli cells in a dose-dependent manner, as well as the specific degeneration of granulosa cells in the primary and secondary follicles caused by DT injection in Tg females.

View Article and Find Full Text PDF

Background: The spermatogonial transplantation experiment can be used as an unequivocal detection assay of spermatogenic stem cells (SSCs) in both a qualitative and quantitative manner, based on their regenerative capacity. In this study, the proliferative patterns and kinetics of donor-derived GFRα1-positive spermatogonia containing potential SSCs were examined during early colonization following spermatogonial transplantation.

Results: Donor-derived GFRα1-positive cells frequently formed several aggregates of A(al(aligned)) /morula-like structures in a single spermatogenic cell patch before and on day 14 post-transplant, indicating a possible involvement in the formation of a stable spermatogenic colony at 21 days post-transplant.

View Article and Find Full Text PDF

Background And Aims: In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs) through GDNF family receptor α1 (GFRα1). It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo.

Methodology And Principal Findings: Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters.

View Article and Find Full Text PDF