We developed a new hybrid consisting of Ag nanoprisms, poly(N-isopropylacrylamide) (PNIPAm), and fluorophores via layer-by-layer assembly. The fluorescence intensity below the lower critical solution temperature (LCST) of PNIPAm was 6.4 times stronger than that above the LCST, meaning that the hybrids can function as nanosized highly thermoresponsive fluorescent sensors.
View Article and Find Full Text PDFWe investigated the dependence of the surface-enhanced Raman scattering (SERS) activity of densely arranged two-dimensional assemblies of spherical Au(core)-Ag(shell) nanoparticles (Au/AgNSs) on the nanoparticle diameter. The size-controlled Au/AgNSs were synthesized using the Au nanosphere seed-mediated growth method without any bulky stabilizers. The diameters of the Au/AgNSs were 38, 53, and 90 nm and the ratio of the total diameter to the Au core diameter was adjusted to ca.
View Article and Find Full Text PDFFabrication of dense two-dimensional assemblies consisting of gold(core)-silver(shell) nanoparticles and the resulting peculiar surface-enhanced Raman scattering (SERS) activity are reported. The assemblies were prepared via assembly at air-toluene interfaces by drop-casting toluene solutions containing the nanoparticles protected with octadecylamine molecules onto glass plates. This simple process, which does not require special apparatus or significant fabrication time, leads to uniform assemblies over vast areas (~34 cm(2)).
View Article and Find Full Text PDFDense two-dimensional assemblies of silver nanoparticles were fabricated over vast areas (~19 cm(2)) by utilizing a simple liquid-liquid interface assembly technique. The Raman signal for p-aminothiophenol immobilized on the assemblies was drastically enhanced by plasmon coupling-induced hot spots, and the enhanced signal showed high spatial reproducibility.
View Article and Find Full Text PDF