The goal of our research is to provide a practical platform for drug delivery in oligonucleotide therapy. We report here the efficacy of an atelocollagen-mediated oligonucleotide delivery system applied to systemic siRNA and antisense oligonucleotide treatments in animal disease models. Atelocollagen and oligonucleotides formed a complex of nanosized particles, which was highly stable against nucleases.
View Article and Find Full Text PDFSilencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery for siRNAs toward treatment of bone-metastatic cancer. Accordingly, we report here that i.
View Article and Find Full Text PDFSilencing gene expression by siRNAs is rapidly becoming a powerful tool for the genetic analysis of mammalian cells. However, the rapid degradation of siRNA and the limited duration of its action call for an efficient delivery technology. Accordingly, we describe here that Atelocollagen complexed with siRNA is resistant to nucleases and is efficiently transduced into cells, thereby allowing long-term gene silencing.
View Article and Find Full Text PDFTo study the possibility of using atelocollagen as an oligonucleotide (ODN) delivery carrier in vivo, the activity of formulated antisense ODN targeted against the intercellular adhesion molecule-1 (ICAM-1) mRNA was investigated in an allergic dermatitis model in mice. The allergic dermatitis was elicited in one ear of animals sensitized by treatment with 2,4-dinitrofluorobenzene. Antisense ODN was given to the animals as a single intravenous injection of formulation containing atelocollagen.
View Article and Find Full Text PDF